These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 31700499)

  • 1. Manipulating
    Liu Q; Su Y; Zhu Y; Peng K; Hong B; Wang R; Gaballah M; Xiao L
    Biol Proced Online; 2019; 21():21. PubMed ID: 31700499
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tillering and panicle branching genes in rice.
    Liang WH; Shang F; Lin QT; Lou C; Zhang J
    Gene; 2014 Mar; 537(1):1-5. PubMed ID: 24345551
    [TBL] [Abstract][Full Text] [Related]  

  • 3. miR156f integrates panicle architecture through genetic modulation of branch number and pedicel length pathways.
    Yang X; Wang J; Dai Z; Zhao X; Miao X; Shi Z
    Rice (N Y); 2019 May; 12(1):40. PubMed ID: 31147794
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Alteration of osa-miR156e expression affects rice plant architecture and strigolactones (SLs) pathway.
    Chen Z; Gao X; Zhang J
    Plant Cell Rep; 2015 May; 34(5):767-81. PubMed ID: 25604991
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genetic Dissection of Rice Ratooning Ability Using an Introgression Line Population and Substitution Mapping of a Pleiotropic Quantitative Trait Locus
    Hu H; Gao R; He L; Liang F; Li Z; Xu J; Yang L; Wang C; Liu Z; Xu J; Qiu X
    Plants (Basel); 2022 Apr; 11(9):. PubMed ID: 35567135
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Rice Circadian Clock Regulates Tiller Growth and Panicle Development Through Strigolactone Signaling and Sugar Sensing.
    Wang F; Han T; Song Q; Ye W; Song X; Chu J; Li J; Chen ZJ
    Plant Cell; 2020 Oct; 32(10):3124-3138. PubMed ID: 32796126
    [TBL] [Abstract][Full Text] [Related]  

  • 7. MiR529a controls plant height, tiller number, panicle architecture and grain size by regulating SPL target genes in rice (Oryza sativa L.).
    Yan Y; Wei M; Li Y; Tao H; Wu H; Chen Z; Li C; Xu JH
    Plant Sci; 2021 Jan; 302():110728. PubMed ID: 33288029
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Branching in rice.
    Wang Y; Li J
    Curr Opin Plant Biol; 2011 Feb; 14(1):94-9. PubMed ID: 21144796
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genetic architecture, inter-relationship and selection criteria for yield improvement in rice (Oryza sativa L.).
    Yadav SK; Pandey P; Kumar B; Suresh BG
    Pak J Biol Sci; 2011 May; 14(9):540-5. PubMed ID: 22032083
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modulation of plant architecture by the miR156f-OsSPL7-OsGH3.8 pathway in rice.
    Dai Z; Wang J; Yang X; Lu H; Miao X; Shi Z
    J Exp Bot; 2018 Oct; 69(21):5117-5130. PubMed ID: 30053063
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ratooning as a management strategy for lodged or drought-damaged rice crops.
    Torres RO; Natividad MA; Quintana MR; Henry A
    Crop Sci; 2020; 60(1):367-380. PubMed ID: 32536700
    [TBL] [Abstract][Full Text] [Related]  

  • 12. OsSHI1 Regulates Plant Architecture Through Modulating the Transcriptional Activity of IPA1 in Rice.
    Duan E; Wang Y; Li X; Lin Q; Zhang T; Wang Y; Zhou C; Zhang H; Jiang L; Wang J; Lei C; Zhang X; Guo X; Wang H; Wan J
    Plant Cell; 2019 May; 31(5):1026-1042. PubMed ID: 30914468
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Physiological and transcriptomic analysis reveal the regulatory mechanism underlying grain quality improvement induced by rice ratooning.
    Lin F; Huang J; Lin S; Letuma P; Xie D; Rensing C; Lin W
    J Sci Food Agric; 2023 May; 103(7):3569-3578. PubMed ID: 36257928
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CLUSTERED PRIMARY BRANCH 1, a new allele of DWARF11, controls panicle architecture and seed size in rice.
    Wu Y; Fu Y; Zhao S; Gu P; Zhu Z; Sun C; Tan L
    Plant Biotechnol J; 2016 Jan; 14(1):377-86. PubMed ID: 25923523
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Blocking amino acid transporter OsAAP3 improves grain yield by promoting outgrowth buds and increasing tiller number in rice.
    Lu K; Wu B; Wang J; Zhu W; Nie H; Qian J; Huang W; Fang Z
    Plant Biotechnol J; 2018 Oct; 16(10):1710-1722. PubMed ID: 29479779
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Brassinosteroid signaling may regulate the germination of axillary buds in ratoon rice.
    Xu H; Lian L; Wang F; Jiang J; Lin Q; Xie H; Luo X; Zhu Y; Zhuo C; Wang J; Xie H; Jiang Z; Zhang J
    BMC Plant Biol; 2020 Feb; 20(1):76. PubMed ID: 32059642
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genome-wide binding analysis of the transcription activator ideal plant architecture1 reveals a complex network regulating rice plant architecture.
    Lu Z; Yu H; Xiong G; Wang J; Jiao Y; Liu G; Jing Y; Meng X; Hu X; Qian Q; Fu X; Wang Y; Li J
    Plant Cell; 2013 Oct; 25(10):3743-59. PubMed ID: 24170127
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ectopic expression of foxtail millet zip-like gene, SiPf40, in transgenic rice plants causes a pleiotropic phenotype affecting tillering, vascular distribution and root development.
    Luan Y; Wang B; Zhao Q; Ao G; Yu J
    Sci China Life Sci; 2010 Dec; 53(12):1450-8. PubMed ID: 21181347
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functions for rice RFL in vegetative axillary meristem specification and outgrowth.
    Deshpande GM; Ramakrishna K; Chongloi GL; Vijayraghavan U
    J Exp Bot; 2015 May; 66(9):2773-84. PubMed ID: 25788736
    [TBL] [Abstract][Full Text] [Related]  

  • 20. PAY1 improves plant architecture and enhances grain yield in rice.
    Zhao L; Tan L; Zhu Z; Xiao L; Xie D; Sun C
    Plant J; 2015 Aug; 83(3):528-36. PubMed ID: 26095647
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.