These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 31701110)

  • 1. micrIO: an open-source autosampler and fraction collector for automated microfluidic input-output.
    Longwell SA; Fordyce PM
    Lab Chip; 2020 Jan; 20(1):93-106. PubMed ID: 31701110
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rapid development and optimization of paper microfluidic designs using software automation.
    Potter J; Brisk P; Grover WH
    Anal Chim Acta; 2021 Nov; 1184():338985. PubMed ID: 34625247
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An Open-Source, Programmable Pneumatic Setup for Operation and Automated Control of Single- and Multi-Layer Microfluidic Devices.
    Brower K; Puccinelli R; Markin CJ; Shimko TC; Longwell SA; Cruz B; Gomez-Sjoberg R; Fordyce PM
    HardwareX; 2018 Apr; 3():117-134. PubMed ID: 30221210
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A disposable smart microfluidic platform integrated with on-chip flow sensors.
    Kim J; Cho H; Kim J; Park JS; Han KH
    Biosens Bioelectron; 2021 Mar; 176():112897. PubMed ID: 33342692
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Automated solid phase DNA extraction on a lab-on-a-disc with two-degrees of freedom instrumentation.
    Carthy É; Hughes B; Higgins E; Early P; Merne C; Walsh D; Parle-McDermott A; Kinahan DJ
    Anal Chim Acta; 2023 Nov; 1280():341859. PubMed ID: 37858565
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Automated Droplet-Based Microfluidic Platform for Multiplexed Analysis of Biochemical Markers in Small Volumes.
    Cedillo-Alcantar DF; Han YD; Choi J; Garcia-Cordero JL; Revzin A
    Anal Chem; 2019 Apr; 91(8):5133-5141. PubMed ID: 30834743
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Automated fluid delivery from multiwell plates to microfluidic devices for high-throughput experiments and microscopy.
    Lagoy RC; Albrecht DR
    Sci Rep; 2018 Apr; 8(1):6217. PubMed ID: 29670202
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Towards an active droplet-based microfluidic platform for programmable fluid handling.
    Cao X; Buryska T; Yang T; Wang J; Fischer P; Streets A; Stavrakis S; deMello A
    Lab Chip; 2023 Apr; 23(8):2029-2038. PubMed ID: 37000567
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Compact Microfluidic Platform with LED Light-Actuated Valves for Enzyme-Linked Immunosorbent Assay Automation.
    Burdó-Masferrer M; Díaz-González M; Sanchis A; Calleja Á; Marco MP; Fernández-Sánchez C; Baldi A
    Biosensors (Basel); 2022 Apr; 12(5):. PubMed ID: 35624581
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of Chip Inlet Geometry in Microfluidic Devices for Cell Studies.
    Sun YS
    Molecules; 2016 Jun; 21(6):. PubMed ID: 27314318
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An automated, pre-programmed, multiplexed, hydraulic microvalve.
    Kim J; Chen D; Bau HH
    Lab Chip; 2009 Dec; 9(24):3594-8. PubMed ID: 20024041
    [TBL] [Abstract][Full Text] [Related]  

  • 12. OpenDrop: An Integrated Do-It-Yourself Platform for Personal Use of Biochips.
    Alistar M; Gaudenz U
    Bioengineering (Basel); 2017 May; 4(2):. PubMed ID: 28952524
    [TBL] [Abstract][Full Text] [Related]  

  • 13. LABS: Laboratory Automation and Batch Scheduling - A Modular Open Source Python Program for the Control of Automated Electrochemical Synthesis with a Web Interface.
    Hielscher MM; Dörr M; Schneider J; Waldvogel SR
    Chem Asian J; 2023 Jul; 18(14):e202300380. PubMed ID: 37269542
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Extraction of nucleic acids from blood: unveiling the potential of active pneumatic pumping in centrifugal microfluidics for integration and automation of sample preparation processes.
    Brassard D; Geissler M; Descarreaux M; Tremblay D; Daoud J; Clime L; Mounier M; Charlebois D; Veres T
    Lab Chip; 2019 Jun; 19(11):1941-1952. PubMed ID: 30997461
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-Efficiency and High-Throughput On-Chip Exchange of the Continuous Phase in Droplet Microfluidic Systems.
    Kim M; Leong CM; Pan M; Blauch LR; Tang SKY
    SLAS Technol; 2017 Oct; 22(5):529-535. PubMed ID: 28402212
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Automation of cell culture assays using a 3D-printed servomotor-controlled microfluidic valve system.
    Winkler S; Menke J; Meyer KV; Kortmann C; Bahnemann J
    Lab Chip; 2022 Nov; 22(23):4656-4665. PubMed ID: 36342331
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An automated centrifugal microfluidic assay for whole blood fractionation and isolation of multiple cell populations using an aqueous two-phase system.
    Moon BU; Clime L; Brassard D; Boutin A; Daoud J; Morton K; Veres T
    Lab Chip; 2021 Oct; 21(21):4060-4070. PubMed ID: 34604897
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Repurposing a microfluidic formulation device for automated DNA construction.
    Goyal G; Elsbree N; Fero M; Hillson NJ; Linshiz G
    PLoS One; 2020; 15(11):e0242157. PubMed ID: 33175889
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Machine learning enables design automation of microfluidic flow-focusing droplet generation.
    Lashkaripour A; Rodriguez C; Mehdipour N; Mardian R; McIntyre D; Ortiz L; Campbell J; Densmore D
    Nat Commun; 2021 Jan; 12(1):25. PubMed ID: 33397940
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhancing droplet transition capabilities using sloped microfluidic channel geometry for stable droplet operation.
    Wippold JA; Huang C; Stratis-Cullum D; Han A
    Biomed Microdevices; 2020 Jan; 22(1):15. PubMed ID: 31965327
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.