These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 3170139)

  • 1. Effects of turbulence on signal intensity in gradient echo images.
    Evans AJ; Blinder RA; Herfkens RJ; Spritzer CE; Kuethe DO; Fram EK; Hedlund LW
    Invest Radiol; 1988 Jul; 23(7):512-8. PubMed ID: 3170139
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Velocity profiles in stenosed models using magnetic resonance imaging.
    Rittgers SE; Fei DY; Kraft KA; Fatouros PP
    Monogr Atheroscler; 1990; 15():43-53. PubMed ID: 2136929
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Appearance of poststenotic jets in MRI: dependence on flow velocity and on imaging parameters.
    Spielmann RP; Schneider O; Thiele F; Heller M; Bücheler E
    Magn Reson Imaging; 1991; 9(1):67-72. PubMed ID: 2056853
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Turbulent fluctuation velocity: the most significant determinant of signal loss in stenotic vessels.
    Oshinski JN; Ku DN; Pettigrew RI
    Magn Reson Med; 1995 Feb; 33(2):193-9. PubMed ID: 7707909
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation of flow through simulated vascular stenoses with gradient echo magnetic resonance imaging.
    Podolak MJ; Hedlund LW; Evans AJ; Herfkens RJ
    Invest Radiol; 1989 Mar; 24(3):184-9. PubMed ID: 2753632
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Velocity profiles in stenosed tube models using magnetic resonance imaging.
    Rittgers SE; Fei DY; Kraft KA; Fatouros PP; Kishore PR
    J Biomech Eng; 1988 Aug; 110(3):180-4. PubMed ID: 3172736
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Computational simulation of turbulent signal loss in 2D time-of-flight magnetic resonance angiograms.
    Siegel JM; Oshinski JN; Pettigrew RI; Ku DN
    Magn Reson Med; 1997 Apr; 37(4):609-14. PubMed ID: 9094084
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cine magnetic resonance imaging and color Doppler flow mapping displays of flow velocity, spatial acceleration, and jet formation: a comparative in vitro study.
    Simpson IA; Maciel BC; Moises V; Shandas R; Elias W; Valdes-Cruz L; Hesselink JR; Chung KJ; Sahn DJ
    Am Heart J; 1993 Nov; 126(5):1165-74. PubMed ID: 8237761
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Non spiral and spiral (helical) flow patterns in stenoses. In vitro observations using spin and gradient echo magnetic resonance imaging (MRI) and computational fluid dynamic modeling.
    Stonebridge PA; Buckley C; Thompson A; Dick J; Hunter G; Chudek JA; Houston JG; Belch JJ
    Int Angiol; 2004 Sep; 23(3):276-83. PubMed ID: 15765044
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantification of complex flow using MR phase imaging--a study of parameters influencing the phase/velocity relation.
    Ståhlberg F; Søndergaard L; Thomsen C; Henriksen O
    Magn Reson Imaging; 1992; 10(1):13-23. PubMed ID: 1545672
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Poststenotic signal loss in MR angiography: effects of echo time, flow compensation, and fractional echo.
    Evans AJ; Richardson DB; Tien R; MacFall JR; Hedlund LW; Heinz ER; Boyko O; Sostman HD
    AJNR Am J Neuroradiol; 1993; 14(3):721-9. PubMed ID: 8517365
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Laminar-to-turbulence and relaminarization zones detection by simulation of low Reynolds number turbulent blood flow in large stenosed arteries.
    Tabe R; Ghalichi F; Hossainpour S; Ghasemzadeh K
    Biomed Mater Eng; 2016 Aug; 27(2-3):119-29. PubMed ID: 27567769
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Low Reynolds number turbulence modeling of blood flow in arterial stenoses.
    Ghalichi F; Deng X; De Champlain A; Douville Y; King M; Guidoin R
    Biorheology; 1998; 35(4-5):281-94. PubMed ID: 10474655
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-speed black blood imaging of vessel stenosis in the presence of pulsatile flow.
    Chien D; Goldmann A; Edelman RR
    J Magn Reson Imaging; 1992; 2(4):437-41. PubMed ID: 1633397
    [TBL] [Abstract][Full Text] [Related]  

  • 15. MRI of blood flow: correlation of image appearance with spin-echo phase shift and signal intensity.
    Valk PE; Hale JD; Crooks LE; Kaufman L; Roos MS; Ortendahl DA; Higgins CB
    AJR Am J Roentgenol; 1986 May; 146(5):931-9. PubMed ID: 3485910
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Turbulent flow effects on NMR imaging: measurement of turbulent intensity.
    Gao JH; Gore JO
    Med Phys; 1991; 18(5):1045-51. PubMed ID: 1961145
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Flow characteristics around proximal and distal stenoses in a series of tandem stenosed vessels.
    Huh HK; Choi WR; Ha H; Lee SJ
    J Biomech; 2016 Sep; 49(13):2960-2967. PubMed ID: 27497502
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of steady and pulsatile flow with dynamic MRI using limited flip angles and gradient refocused echoes.
    Evans AJ; Hedlund LW; Herfkens RJ; Utz JA; Fram EK; Blinder RA
    Magn Reson Imaging; 1987; 5(6):475-82. PubMed ID: 3431358
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Turbulence detection in a stenosed artery bifurcation by numerical simulation of pulsatile blood flow using the low-Reynolds number turbulence model.
    Ghalichi F; Deng X
    Biorheology; 2003; 40(6):637-54. PubMed ID: 14610313
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Experimental studies on magnetic resonance tomographic and magnetic resonance angiographic imaging of poststenotic flow patterns].
    Krug B; Kugel H; Friedmann G; Bunke J; van Dijk P; Schmidt R; Hirche HJ
    Rofo; 1992 May; 156(5):475-81. PubMed ID: 1596553
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.