These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 31701539)

  • 1. The flow of time in cardiopulmonary bypass.
    Condello I
    Artif Organs; 2020 Apr; 44(4):435-436. PubMed ID: 31701539
    [No Abstract]   [Full Text] [Related]  

  • 2. Pulsatile flow during cardiopulmonary bypass preserves postoperative microcirculatory perfusion irrespective of systemic hemodynamics.
    Koning NJ; Vonk AB; van Barneveld LJ; Beishuizen A; Atasever B; van den Brom CE; Boer C
    J Appl Physiol (1985); 2012 May; 112(10):1727-34. PubMed ID: 22403352
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Laboratory studies regarding regional low-flow perfusion for neonatal cardiac surgery.
    DeCampli WM
    Cardiol Young; 2005 Feb; 15 Suppl 1():134-41. PubMed ID: 15934706
    [No Abstract]   [Full Text] [Related]  

  • 4. Gut mucosal ischemia during normothermic cardiopulmonary bypass results from blood flow redistribution and increased oxygen demand.
    Tao W; Zwischenberger JB; Nguyen TT; Vertrees RA; McDaniel LB; Nutt LK; Herndon DN; Kramer GC
    J Thorac Cardiovasc Surg; 1995 Sep; 110(3):819-28. PubMed ID: 7564451
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Novel cerebral physiologic monitoring to guide low-flow cerebral perfusion during neonatal aortic arch reconstruction.
    Andropoulos DB; Stayer SA; McKenzie ED; Fraser CD
    J Thorac Cardiovasc Surg; 2003 Mar; 125(3):491-9. PubMed ID: 12658190
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cerebral oxygenation during cardiopulmonary bypass.
    Harris DN
    Adv Exp Med Biol; 1996; 388():41-4. PubMed ID: 8798792
    [No Abstract]   [Full Text] [Related]  

  • 7. Hemodilution and whole body oxygen balance during normothermic cardiopulmonary bypass in dogs.
    Liam BL; Plöchl W; Cook DJ; Orszulak TA; Daly RC
    J Thorac Cardiovasc Surg; 1998 May; 115(5):1203-8. PubMed ID: 9605092
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Determination of optimal perfusion flow rate for deep hypothermic cardiopulmonary bypass in the adult based on distributions of blood flow and oxygen consumption.
    Matsuda H; Sasako Y; Nakano S; Shirakura R; Ohtani M; Kaneko M; Ohtake S; Kawashima Y
    J Thorac Cardiovasc Surg; 1992 Mar; 103(3):541-8. PubMed ID: 1545553
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nonpulsatile cardiopulmonary bypass disrupts the flow-metabolism couple in the brain.
    Andersen K; Waaben J; Husum B; Voldby B; Bødker A; Hansen AJ; Gjedde A
    J Thorac Cardiovasc Surg; 1985 Oct; 90(4):570-9. PubMed ID: 4046623
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of temperature and flow rate on regional blood flow and metabolism during cardiopulmonary bypass.
    Lazenby WD; Ko W; Zelano JA; Lebowitz N; Shin YT; Isom OW; Krieger KH
    Ann Thorac Surg; 1992 Jun; 53(6):957-64. PubMed ID: 1596156
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimal perfusion flow rate for the brain during deep hypothermic cardiopulmonary bypass at 20 degrees C. An experimental study.
    Miyamoto K; Kawashima Y; Matsuda H; Okuda A; Maeda S; Hirose H
    J Thorac Cardiovasc Surg; 1986 Dec; 92(6):1065-70. PubMed ID: 3784587
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A method for perfusion of the leg during cardiopulmonary bypass via femoral cannulation.
    Hendrickson SC; Glower DD
    Ann Thorac Surg; 1998 Jun; 65(6):1807-8. PubMed ID: 9647119
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effects of pulsatile cardiopulmonary bypass on cerebral and renal blood flow in dogs.
    Cook DJ; Orszulak TA; Daly RC
    J Cardiothorac Vasc Anesth; 1997 Jun; 11(4):420-7. PubMed ID: 9187988
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pulseless cardiopulmonary bypass.
    Edmunds LH
    J Thorac Cardiovasc Surg; 1982 Dec; 84(6):800-4. PubMed ID: 7144212
    [No Abstract]   [Full Text] [Related]  

  • 15. Static blood-flow control during cardiopulmonary bypass is a compromise of oxygen delivery.
    Svenmarker S; Häggmark S; Hultin M; Holmgren A
    Eur J Cardiothorac Surg; 2010 Jan; 37(1):218-22. PubMed ID: 19643620
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Avoiding hyperoxemia at the start of cardiopulmonary bypass while optimizing gas flow and temperature.
    Myers GJ; Légaré JF
    J Extra Corpor Technol; 1999 Sep; 31(3):145-51. PubMed ID: 10847958
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cardiopulmonary bypass: perioperative cerebral blood flow and postoperative cognitive deficit.
    Venn GE; Patel RL; Chambers DJ
    Ann Thorac Surg; 1995 May; 59(5):1331-5. PubMed ID: 7733763
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Impact of Norepinephrine on Regional Cerebral Oxygenation During Cardiopulmonary Bypass.
    Hagen OA; Høiseth LØ; Roslin A; Landsverk SA; Woldbaek PR; Pripp AH; Hanoa R; Kirkebøen KA
    J Cardiothorac Vasc Anesth; 2016 Apr; 30(2):291-6. PubMed ID: 27013119
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A retrospective analysis of the mixed venous oxygen saturation as the target for systemic blood flow control during cardiopulmonary bypass.
    Svenmarker S; Hannuksela M; Haney M
    Perfusion; 2018 Sep; 33(6):453-462. PubMed ID: 29623766
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Balloon pump-induced pulsatile perfusion during cardiopulmonary bypass does not improve brain oxygenation.
    Kawahara F; Kadoi Y; Saito S; Yoshikawa D; Goto F; Fujita N
    J Thorac Cardiovasc Surg; 1999 Aug; 118(2):361-6. PubMed ID: 10425011
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.