These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 31701663)

  • 21. A pH Fingerprint Assay to Identify Inhibitors of Multiple Validated and Potential Antimalarial Drug Targets.
    Lindblom JCR; Zhang X; Lehane AM
    ACS Infect Dis; 2024 Apr; 10(4):1185-1200. PubMed ID: 38499199
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Can a single "powerless" mitochondrion in the malaria parasite contribute to parasite programmed cell death in the asexual stages?
    Ch'ng JH; Yeo SP; Shyong-Wei Tan K
    Mitochondrion; 2013 May; 13(3):254-6. PubMed ID: 23123916
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Macrolides rapidly inhibit red blood cell invasion by the human malaria parasite, Plasmodium falciparum.
    Wilson DW; Goodman CD; Sleebs BE; Weiss GE; de Jong NW; Angrisano F; Langer C; Baum J; Crabb BS; Gilson PR; McFadden GI; Beeson JG
    BMC Biol; 2015 Jul; 13():52. PubMed ID: 26187647
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Transporters as mediators of drug resistance in Plasmodium falciparum.
    Sanchez CP; Dave A; Stein WD; Lanzer M
    Int J Parasitol; 2010 Aug; 40(10):1109-18. PubMed ID: 20399785
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Transport proteins of Plasmodium falciparum: defining the limits of metabolism.
    Krishna S; Webb R; Woodrow C
    Int J Parasitol; 2001 Oct; 31(12):1331-42. PubMed ID: 11566301
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Parasite-Related Genetic and Epigenetic Aspects and Host Factors Influencing
    Ararat-Sarria M; Patarroyo MA; Curtidor H
    Front Cell Infect Microbiol; 2018; 8():454. PubMed ID: 30693273
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mitochondrial type II NADH dehydrogenase of Plasmodium falciparum (PfNDH2) is dispensable in the asexual blood stages.
    Ke H; Ganesan SM; Dass S; Morrisey JM; Pou S; Nilsen A; Riscoe MK; Mather MW; Vaidya AB
    PLoS One; 2019; 14(4):e0214023. PubMed ID: 30964863
    [TBL] [Abstract][Full Text] [Related]  

  • 28. CRIMALDDI: platform technologies and novel anti-malarial drug targets.
    Vial H; Taramelli D; Boulton IC; Ward SA; Doerig C; Chibale K
    Malar J; 2013 Nov; 12():396. PubMed ID: 24498961
    [TBL] [Abstract][Full Text] [Related]  

  • 29. RNA-Seq Analysis Illuminates the Early Stages of
    Toro-Moreno M; Sylvester K; Srivastava T; Posfai D; Derbyshire ER
    mBio; 2020 Feb; 11(1):. PubMed ID: 32019802
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Phenotypic Screens Identify Parasite Genetic Factors Associated with Malarial Fever Response in
    Thomas P; Sedillo J; Oberstaller J; Li S; Zhang M; Singh N; Wang CC; Udenze K; Jiang RH; Adams JH
    mSphere; 2016; 1(5):. PubMed ID: 27830190
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Phylogenetic profiles of all membrane transport proteins of the malaria parasite highlight new drug targets.
    Weiner J; Kooij TW
    Microb Cell; 2016 Aug; 3(10):511-521. PubMed ID: 28357319
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Biological characterization of chemically diverse compounds targeting the Plasmodium falciparum coenzyme A synthesis pathway.
    Fletcher S; Lucantoni L; Sykes ML; Jones AJ; Holleran JP; Saliba KJ; Avery VM
    Parasit Vectors; 2016 Nov; 9(1):589. PubMed ID: 27855724
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Exploring metabolomic approaches to analyse phospholipid biosynthetic pathways in Plasmodium.
    Besteiro S; Vo Duy S; Perigaud C; Lefebvre-Tournier I; Vial HJ
    Parasitology; 2010 Aug; 137(9):1343-56. PubMed ID: 20109251
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Hexahydroquinolines are antimalarial candidates with potent blood-stage and transmission-blocking activity.
    Vanaerschot M; Lucantoni L; Li T; Combrinck JM; Ruecker A; Kumar TRS; Rubiano K; Ferreira PE; Siciliano G; Gulati S; Henrich PP; Ng CL; Murithi JM; Corey VC; Duffy S; Lieberman OJ; Veiga MI; Sinden RE; Alano P; Delves MJ; Lee Sim K; Winzeler EA; Egan TJ; Hoffman SL; Avery VM; Fidock DA
    Nat Microbiol; 2017 Oct; 2(10):1403-1414. PubMed ID: 28808258
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Transport of lactate and pyruvate in the intraerythrocytic malaria parasite, Plasmodium falciparum.
    Elliott JL; Saliba KJ; Kirk K
    Biochem J; 2001 May; 355(Pt 3):733-9. PubMed ID: 11311136
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Targeting nutrient uptake mechanisms in Plasmodium.
    Kirk K; Saliba KJ
    Curr Drug Targets; 2007 Jan; 8(1):75-88. PubMed ID: 17266532
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Nima- and Aurora-related kinases of malaria parasites.
    Carvalho TG; Doerig C; Reininger L
    Biochim Biophys Acta; 2013 Jul; 1834(7):1336-45. PubMed ID: 23462523
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Chloroquine mediates specific proteome oxidative damage across the erythrocytic cycle of resistant Plasmodium falciparum.
    Radfar A; Diez A; Bautista JM
    Free Radic Biol Med; 2008 Jun; 44(12):2034-42. PubMed ID: 18397762
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A Review of Major Patents on Potential Malaria Vaccine Targets.
    Mariano RMDS; Gonçalves AAM; Oliveira DS; Ribeiro HS; Pereira DFS; Santos IS; Lair DF; Silva AVD; Galdino AS; Chávez-Fumagalli MA; Silveira-Lemos DD; Dutra WO; Giunchetti RC
    Pathogens; 2023 Feb; 12(2):. PubMed ID: 36839519
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Development of Plasmodium falciparum protease inhibitors in the past decade (2002-2012).
    Pérez B; Teixeira C; Gomes JR; Gomes P
    Curr Med Chem; 2013; 20(25):3049-68. PubMed ID: 23514416
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.