These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 31701738)

  • 1. Bioluminescence Imaging of Selenocysteine in Vivo with a Highly Sensitive Probe.
    Zhang L; Shi Y; Sheng Z; Zhang Y; Kai X; Li M; Yin X
    ACS Sens; 2019 Dec; 4(12):3147-3155. PubMed ID: 31701738
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A reaction-based near-infrared fluorescent probe that can visualize endogenous selenocysteine in vivo in tumor-bearing mice.
    Zhang L; Kai X; Zhang Y; Zheng Y; Xue Y; Yin X; Zhao J
    Analyst; 2018 Oct; 143(20):4860-4869. PubMed ID: 30128454
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bioluminescence Sensing of γ-Glutamyltranspeptidase Activity In Vitro and In Vivo.
    Hai Z; Wu J; Wang L; Xu J; Zhang H; Liang G
    Anal Chem; 2017 Jul; 89(13):7017-7021. PubMed ID: 28605900
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hydrazide d-luciferin for in vitro selective detection and intratumoral imaging of Cu(2.).
    Zheng Z; Wang L; Tang W; Chen P; Zhu H; Yuan Y; Li G; Zhang H; Liang G
    Biosens Bioelectron; 2016 Sep; 83():200-4. PubMed ID: 27131992
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Near-Infrared Fluorescent Turn-on Probe with a Remarkable Large Stokes Shift for Imaging Selenocysteine in Living Cells and Animals.
    Feng W; Li M; Sun Y; Feng G
    Anal Chem; 2017 Jun; 89(11):6106-6112. PubMed ID: 28504517
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Visualization of mercury(ii) accumulation in vivo using bioluminescence imaging with a highly selective probe.
    Ke B; Chen H; Ma L; Zingales S; Gong D; Hu D; Du L; Li M
    Org Biomol Chem; 2018 Apr; 16(14):2388-2392. PubMed ID: 29560483
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Bioluminescent Probe for Imaging Endogenous Peroxynitrite in Living Cells and Mice.
    Li JB; Chen L; Wang Q; Liu HW; Hu XX; Yuan L; Zhang XB
    Anal Chem; 2018 Mar; 90(6):4167-4173. PubMed ID: 29468879
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bioluminescence imaging of carbon monoxide in living cells based on a selective deiodination reaction.
    Wang A; Li X; Ju Y; Chen D; Lu J
    Analyst; 2020 Jan; 145(2):550-556. PubMed ID: 31764924
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vivo bioluminescence imaging of labile iron pools in a murine model of sepsis with a highly selective probe.
    Feng P; Ma L; Xu F; Gou X; Du L; Ke B; Li M
    Talanta; 2019 Oct; 203():29-33. PubMed ID: 31202341
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Detection of Selenocysteine with a Ratiometric near-Infrared Fluorescent Probe in Cells and in Mice Thyroid Diseases Model.
    Luo X; Wang R; Lv C; Chen G; You J; Yu F
    Anal Chem; 2020 Jan; 92(1):1589-1597. PubMed ID: 31815453
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Selenocysteine detection and bioimaging in living cells by a colorimetric and near-infrared fluorescent turn-on probe with a large stokes shift.
    Li M; Feng W; Zhai Q; Feng G
    Biosens Bioelectron; 2017 Jan; 87():894-900. PubMed ID: 27664408
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Novel Chemiluminescent Probe Based on 1,2-Dioxetane Scaffold for Imaging Cysteine in Living Mice.
    Sun J; Hu Z; Zhang S; Zhang X
    ACS Sens; 2019 Jan; 4(1):87-92. PubMed ID: 30592399
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biothiol-Activatable Bioluminescent Coelenterazine Derivative for Molecular Imaging in Vitro and in Vivo.
    Nomura N; Nishihara R; Nakajima T; Kim SB; Iwasawa N; Hiruta Y; Nishiyama S; Sato M; Citterio D; Suzuki K
    Anal Chem; 2019 Aug; 91(15):9546-9553. PubMed ID: 31291724
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Au nanoparticle-based probe for selenol in living cells and selenium-rich tea and rice.
    Guo Y; Luo Y; Wang N; Tang M; Xiao J; Chen SW; Wang J
    Talanta; 2020 May; 212():120583. PubMed ID: 32113570
    [TBL] [Abstract][Full Text] [Related]  

  • 15. ortho-Chlorination of phenoxy 1,2-dioxetane yields superior chemiluminescent probes for in vitro and in vivo imaging.
    Eilon-Shaffer T; Roth-Konforti M; Eldar-Boock A; Satchi-Fainaro R; Shabat D
    Org Biomol Chem; 2018 Mar; 16(10):1708-1712. PubMed ID: 29451576
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A two-photon "turn-on" fluorescent probe for both exogenous and endogenous selenocysteine detection and imaging in living cells and zebrafish.
    Zhao M; Shi D; Hu W; Ma T; He L; Lu D; Hu Y; Zhou L
    Spectrochim Acta A Mol Biomol Spectrosc; 2021 Nov; 260():119983. PubMed ID: 34052765
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Using Bioluminescence Turn-On To Detect Cysteine in Vitro and in Vivo.
    Zhang M; Wang L; Zhao Y; Wang F; Wu J; Liang G
    Anal Chem; 2018 Apr; 90(8):4951-4954. PubMed ID: 29606000
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bioluminescent Probe for Detecting Mercury(II) in Living Mice.
    Jiang T; Ke B; Chen H; Wang W; Du L; Yang K; Li M
    Anal Chem; 2016 Aug; 88(15):7462-5. PubMed ID: 27412583
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design of a phosphinate-based bioluminescent probe for superoxide radical anion imaging in living cells.
    Liu X; Tian X; Xu X; Lu J
    Luminescence; 2018 Sep; 33(6):1101-1106. PubMed ID: 29968960
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mitochondria-Targetable Ratiometric Time-Gated Luminescence Probe Activated by Selenocysteine for the Visual Monitoring of Liver Injuries.
    Huang Y; Song B; Chen K; Tang Z; Ma H; Kong D; Liu Q; Yuan J
    Anal Chem; 2023 Feb; 95(8):4024-4032. PubMed ID: 36799513
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.