These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 31701739)

  • 1. Speciation and Fractionation of Soil Arsenic from Natural and Anthropogenic Sources: Chemical Extraction, Scanning Electron Microscopy, and Micro-XRF/XAFS Investigation.
    Itabashi T; Li J; Hashimoto Y; Ueshima M; Sakanakura H; Yasutaka T; Imoto Y; Hosomi M
    Environ Sci Technol; 2019 Dec; 53(24):14186-14193. PubMed ID: 31701739
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Geochemical fractionation of thallium in contaminated soils near a large-scale Hg-Tl mineralised area.
    Lin J; Yin M; Wang J; Liu J; Tsang DCW; Wang Y; Lin M; Li H; Zhou Y; Song G; Chen Y
    Chemosphere; 2020 Jan; 239():124775. PubMed ID: 31521931
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Arsenic speciation and phytoavailability in contaminated soils using a sequential extraction procedure and XANES spectroscopy.
    Niazi NK; Singh B; Shah P
    Environ Sci Technol; 2011 Sep; 45(17):7135-42. PubMed ID: 21797214
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fractionation and elemental association of Zn, Cd and Pb in soils contaminated by Zn minings using a continuous-flow sequential extraction.
    Buanuam J; Shiowatana J; Pongsakul P
    J Environ Monit; 2005 Aug; 7(8):778-84. PubMed ID: 16049578
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pollution potential leaching index as a tool to assess water leaching risk of arsenic in excavated urban soils.
    Li J; Kosugi T; Riya S; Hashimoto Y; Hou H; Terada A; Hosomi M
    Ecotoxicol Environ Saf; 2018 Jan; 147():72-79. PubMed ID: 28837872
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Distribution of natural and anthropogenic thallium in the soils in an industrial pyrite slag disposing area.
    Yang C; Chen Y; Peng P; Li C; Chang X; Xie C
    Sci Total Environ; 2005 Apr; 341(1-3):159-72. PubMed ID: 15833249
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The impact of sequestration on the bioaccessibility of arsenic in long-term contaminated soils.
    Smith E; Naidu R; Weber J; Juhasz AL
    Chemosphere; 2008 Mar; 71(4):773-80. PubMed ID: 18023842
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Arsenic, chromium, molybdenum, and selenium: Geochemical fractions and potential mobilization in riverine soil profiles originating from Germany and Egypt.
    Shaheen SM; Kwon EE; Biswas JK; Tack FMG; Ok YS; Rinklebe J
    Chemosphere; 2017 Aug; 180():553-563. PubMed ID: 28432892
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Arsenic bioaccessibility in CCA-contaminated soils: influence of soil properties, arsenic fractionation, and particle-size fraction.
    Girouard E; Zagury GJ
    Sci Total Environ; 2009 Apr; 407(8):2576-85. PubMed ID: 19211134
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The fate of arsenic in soil-plant systems.
    Moreno-Jiménez E; Esteban E; Peñalosa JM
    Rev Environ Contam Toxicol; 2012; 215():1-37. PubMed ID: 22057929
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In situ chemical fixation of arsenic-contaminated soils: an experimental study.
    Yang L; Donahoe RJ; Redwine JC
    Sci Total Environ; 2007 Nov; 387(1-3):28-41. PubMed ID: 17673278
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of the spectroscopic speciation and chemical fractionation of chromium in contaminated paddy soils.
    Hsu LC; Liu YT; Tzou YM
    J Hazard Mater; 2015 Oct; 296():230-238. PubMed ID: 25935296
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Arsenic speciation in multiple metal environments II. Micro-spectroscopic investigation of a CCA contaminated soil.
    Gräfe M; Tappero RV; Marcus MA; Sparks DL
    J Colloid Interface Sci; 2008 May; 321(1):1-20. PubMed ID: 18321525
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Arsenic extractability in soils in the areas of former arsenic mining and smelting, SW Poland.
    Krysiak A; Karczewska A
    Sci Total Environ; 2007 Jul; 379(2-3):190-200. PubMed ID: 17187844
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Investigations of water-extractability of As in excavated urban soils using sequential leaching tests: Effect of testing parameters.
    Li J; Kosugi T; Riya S; Hashimoto Y; Hou H; Terada A; Hosomi M
    J Environ Manage; 2018 Jul; 217():297-304. PubMed ID: 29614478
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spatial distribution and speciation of arsenic in peat studied with Microfocused X-ray fluorescence spectrometry and X-ray absorption spectroscopy.
    Langner P; Mikutta C; Suess E; Marcus MA; Kretzschmar R
    Environ Sci Technol; 2013 Sep; 47(17):9706-14. PubMed ID: 23889036
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Redox changes in speciation and solubility of arsenic in paddy soils as affected by sulfur concentrations.
    Hashimoto Y; Kanke Y
    Environ Pollut; 2018 Jul; 238():617-623. PubMed ID: 29609173
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Arsenic speciation and bioaccessibility in arsenic-contaminated soils: sequential extraction and mineralogical investigation.
    Kim EJ; Yoo JC; Baek K
    Environ Pollut; 2014 Mar; 186():29-35. PubMed ID: 24361561
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of ore processing activity on Hg, As and Sb contamination and fractionation in soils in a former mining site of Monte Amiata ore district (Italy).
    Protano G; Nannoni F
    Chemosphere; 2018 May; 199():320-330. PubMed ID: 29448200
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fractions and colloidal distribution of arsenic associated with iron oxide minerals in lead-zinc mine-contaminated soils: Comparison of tailings and smelter pollution.
    Ma J; Lei M; Weng L; Li Y; Chen Y; Islam MS; Zhao J; Chen T
    Chemosphere; 2019 Jul; 227():614-623. PubMed ID: 31009868
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.