These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
505 related articles for article (PubMed ID: 31701962)
1. Structure, stability and water adsorption on ultra-thin TiO Gutiérrez Moreno JJ; Fronzi M; Lovera P; O'Riordan A; Ford MJ; Li W; Nolan M Phys Chem Chem Phys; 2019 Dec; 21(45):25344-25361. PubMed ID: 31701962 [TBL] [Abstract][Full Text] [Related]
2. Ab Initio Study of the Atomic Level Structure of the Rutile TiO Gutiérrez Moreno JJ; Nolan M ACS Appl Mater Interfaces; 2017 Nov; 9(43):38089-38100. PubMed ID: 28937740 [TBL] [Abstract][Full Text] [Related]
3. Reactivity of sub 1 nm supported clusters: (TiO2)n clusters supported on rutile TiO2 (110). Iwaszuk A; Nolan M Phys Chem Chem Phys; 2011 Mar; 13(11):4963-73. PubMed ID: 21331430 [TBL] [Abstract][Full Text] [Related]
4. Vacancy segregation in the initial oxidation stages of the TiN(100) surface. Zimmermann J; Finnis MW; Ciacchi LC J Chem Phys; 2009 Apr; 130(13):134714. PubMed ID: 19355771 [TBL] [Abstract][Full Text] [Related]
5. The role of surface and subsurface point defects for chemical model studies on TiO2: a first-principles theoretical study of formaldehyde bonding on rutile TiO2(110). Haubrich J; Kaxiras E; Friend CM Chemistry; 2011 Apr; 17(16):4496-506. PubMed ID: 21433119 [TBL] [Abstract][Full Text] [Related]
6. Density functional study of the interfacial electron transfer pathway for monolayer-adsorbed InN on the TiO(2) anatase (101) surface. Lin JS; Chou WC; Lu SY; Jang GJ; Tseng BR; Li YT J Phys Chem B; 2006 Nov; 110(46):23460-6. PubMed ID: 17107198 [TBL] [Abstract][Full Text] [Related]
7. Adsorption and reactions of O2 on anatase TiO2. Li YF; Aschauer U; Chen J; Selloni A Acc Chem Res; 2014 Nov; 47(11):3361-8. PubMed ID: 24742024 [TBL] [Abstract][Full Text] [Related]
8. O2 adsorption on MO2 (M=Ru, Ir, Sn) films supported on rutile TiO2(110) by DFT calculations: Probing the nature of metal oxide-support interaction. Xu X; Sun X; Sun B; Peng H; Liu W; Wang X J Colloid Interface Sci; 2016 Jul; 473():100-11. PubMed ID: 27060230 [TBL] [Abstract][Full Text] [Related]
9. Stable Water Oxidation in Acid Using Manganese-Modified TiO Siddiqi G; Luo Z; Xie Y; Pan Z; Zhu Q; Röhr JA; Cha JJ; Hu S ACS Appl Mater Interfaces; 2018 Jun; 10(22):18805-18815. PubMed ID: 29668253 [TBL] [Abstract][Full Text] [Related]
10. Structure and reactivity of highly reduced titanium oxide surface layers on TiO Wen B; Liu LM; Selloni A J Chem Phys; 2019 Nov; 151(18):184701. PubMed ID: 31731841 [TBL] [Abstract][Full Text] [Related]
11. Density functional study of the interaction between small Au clusters, Au(n) (n=1-7) and the rutile TiO2 surface. II. Adsorption on a partially reduced surface. Chrétien S; Metiu H J Chem Phys; 2007 Dec; 127(24):244708. PubMed ID: 18163696 [TBL] [Abstract][Full Text] [Related]
12. Adsorption of O2 and oxidation of CO at Au nanoparticles supported by TiO2(110). Molina LM; Rasmussen MD; Hammer B J Chem Phys; 2004 Apr; 120(16):7673-80. PubMed ID: 15267678 [TBL] [Abstract][Full Text] [Related]
13. Structural motifs of water on metal oxide surfaces. Mu R; Zhao ZJ; Dohnálek Z; Gong J Chem Soc Rev; 2017 Apr; 46(7):1785-1806. PubMed ID: 28180223 [TBL] [Abstract][Full Text] [Related]
14. Low-Temperature Atomic Layer Deposition of Metal Oxide Layers for Perovskite Solar Cells with High Efficiency and Stability under Harsh Environmental Conditions. Lv Y; Xu P; Ren G; Chen F; Nan H; Liu R; Wang D; Tan X; Liu X; Zhang H; Chen ZK ACS Appl Mater Interfaces; 2018 Jul; 10(28):23928-23937. PubMed ID: 29952555 [TBL] [Abstract][Full Text] [Related]
15. One-step transfer and integration of multifunctionality in CVD graphene by TiO₂/graphene oxide hybrid layer. Jeong HJ; Kim HY; Jeong H; Han JT; Jeong SY; Baeg KJ; Jeong MS; Lee GW Small; 2014 May; 10(10):2057-66. PubMed ID: 24578338 [TBL] [Abstract][Full Text] [Related]
16. Resolving the odd-even oscillation of water dissociation at rutile TiO Zhuang YB; Bi RH; Cheng J J Chem Phys; 2022 Oct; 157(16):164701. PubMed ID: 36319401 [TBL] [Abstract][Full Text] [Related]
17. Surface chemistry and photochemistry of small molecules on rutile TiO Wu L; Wang Z; Xiong F; Sun G; Chai P; Zhang Z; Xu H; Fu C; Huang W J Chem Phys; 2020 Jan; 152(4):044702. PubMed ID: 32007048 [TBL] [Abstract][Full Text] [Related]
18. Attaching titania clusters of various size to reduced graphene oxide and its impact on the conceivable photocatalytic behavior of the junctions-a DFT/D + U and TD DFTB modeling. Piskorz W; Zasada F; Wójtowicz G; Morawski A; Macyk W; Sojka Z J Phys Condens Matter; 2019 Oct; 31(40):404001. PubMed ID: 31226702 [TBL] [Abstract][Full Text] [Related]
19. Origin of Charge Trapping in TiO Gillespie PNO; Martsinovich N ACS Appl Mater Interfaces; 2019 Sep; 11(35):31909-31922. PubMed ID: 31385493 [TBL] [Abstract][Full Text] [Related]
20. Ultrafast dynamics of solvated electrons at anatase TiO Sun H; Zheng Q; Lu W; Zhao J J Phys Condens Matter; 2019 Mar; 31(11):114004. PubMed ID: 30625440 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]