These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Hydrodynamic simulations of self-phoretic microswimmers. Yang M; Wysocki A; Ripoll M Soft Matter; 2014 Sep; 10(33):6208-18. PubMed ID: 25012361 [TBL] [Abstract][Full Text] [Related]
3. Hydrodynamic model of fish orientation in a channel flow. Porfiri M; Zhang P; Peterson SD Elife; 2022 Jun; 11():. PubMed ID: 35666104 [TBL] [Abstract][Full Text] [Related]
4. Propensity of undulatory swimmers, such as worms, to go against the flow. Yuan J; Raizen DM; Bau HH Proc Natl Acad Sci U S A; 2015 Mar; 112(12):3606-11. PubMed ID: 25775552 [TBL] [Abstract][Full Text] [Related]
5. Fight the flow: the role of shear in artificial rheotaxis for individual and collective motion. Baker R; Kauffman JE; Laskar A; Shklyaev OE; Potomkin M; Dominguez-Rubio L; Shum H; Cruz-Rivera Y; Aranson IS; Balazs AC; Sen A Nanoscale; 2019 Jun; 11(22):10944-10951. PubMed ID: 31139774 [TBL] [Abstract][Full Text] [Related]
6. Hydrodynamic interaction of a self-propelling particle with a wall : Comparison between an active Janus particle and a squirmer model. Shen Z; Würger A; Lintuvuori JS Eur Phys J E Soft Matter; 2018 Mar; 41(3):39. PubMed ID: 29594924 [TBL] [Abstract][Full Text] [Related]
7. Locomotion of microorganisms near a no-slip boundary in a viscoelastic fluid. Yazdi S; Ardekani AM; Borhan A Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Oct; 90(4):043002. PubMed ID: 25375589 [TBL] [Abstract][Full Text] [Related]
9. Phoretic and hydrodynamic interactions of weakly confined autophoretic particles. Kanso E; Michelin S J Chem Phys; 2019 Jan; 150(4):044902. PubMed ID: 30709320 [TBL] [Abstract][Full Text] [Related]
10. Rheotaxis of spherical active particles near a planar wall. Uspal WE; Popescu MN; Dietrich S; Tasinkevych M Soft Matter; 2015 Sep; 11(33):6613-32. PubMed ID: 26200672 [TBL] [Abstract][Full Text] [Related]
11. Hydrodynamic oscillations and variable swimming speed in squirmers close to repulsive walls. Lintuvuori JS; Brown AT; Stratford K; Marenduzzo D Soft Matter; 2016 Sep; 12(38):7959-7968. PubMed ID: 27714374 [TBL] [Abstract][Full Text] [Related]
12. Emergence of coherent structures and large-scale flows in motile suspensions. Saintillan D; Shelley MJ J R Soc Interface; 2012 Mar; 9(68):571-85. PubMed ID: 21865254 [TBL] [Abstract][Full Text] [Related]
13. Mesoscale simulations of hydrodynamic squirmer interactions. Götze IO; Gompper G Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Oct; 82(4 Pt 1):041921. PubMed ID: 21230327 [TBL] [Abstract][Full Text] [Related]
14. Hydrodynamic interaction of microswimmers near a wall. Li GJ; Ardekani AM Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jul; 90(1):013010. PubMed ID: 25122372 [TBL] [Abstract][Full Text] [Related]
15. Earth-strength magnetic field affects the rheotactic threshold of zebrafish swimming in shoals. Cresci A; De Rosa R; Putman NF; Agnisola C Comp Biochem Physiol A Mol Integr Physiol; 2017 Feb; 204():169-176. PubMed ID: 27915151 [TBL] [Abstract][Full Text] [Related]
16. Extensional rheology of active suspensions. Saintillan D Phys Rev E Stat Nonlin Soft Matter Phys; 2010 May; 81(5 Pt 2):056307. PubMed ID: 20866322 [TBL] [Abstract][Full Text] [Related]
18. The spatiotemporal dynamics of rheotactic behavior depends on flow speed and available sensory information. Bak-Coleman J; Court A; Paley DA; Coombs S J Exp Biol; 2013 Nov; 216(Pt 21):4011-24. PubMed ID: 23913948 [TBL] [Abstract][Full Text] [Related]
19. Colloidal swimmers near curved and structured walls. Das S; Cacciuto A Soft Matter; 2019 Oct; 15(41):8290-8301. PubMed ID: 31616894 [TBL] [Abstract][Full Text] [Related]
20. Change in rheotactic behavior patterns of dinoflagellates in response to different microfluidic environments. Li SW; Lin PH; Ho TY; Hsieh CH; Sun CL Sci Rep; 2021 May; 11(1):11105. PubMed ID: 34045568 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]