These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 31702241)

  • 21. Reduced-order model for inertial locomotion of a slender swimmer.
    Mahalinkam R; Gong F; Khair AS
    Phys Rev E; 2018 Apr; 97(4-1):043102. PubMed ID: 29758634
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Fluid flow and sperm guidance: a simulation study of hydrodynamic sperm rheotaxis.
    Ishimoto K; Gaffney EA
    J R Soc Interface; 2015 May; 12(106):. PubMed ID: 25878133
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Oscillatory rheotaxis of artificial swimmers in microchannels.
    Dey R; Buness CM; Hokmabad BV; Jin C; Maass CC
    Nat Commun; 2022 May; 13(1):2952. PubMed ID: 35618708
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Hydrodynamics Defines the Stable Swimming Direction of Spherical Squirmers in a Nematic Liquid Crystal.
    Lintuvuori JS; Würger A; Stratford K
    Phys Rev Lett; 2017 Aug; 119(6):068001. PubMed ID: 28949617
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Janus microdimer swimming in an oscillating magnetic field.
    Yang J
    R Soc Open Sci; 2020 Dec; 7(12):200378. PubMed ID: 33489250
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Drafting distance in swimming.
    Chatard JC; Wilson B
    Med Sci Sports Exerc; 2003 Jul; 35(7):1176-81. PubMed ID: 12840639
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Population splitting of rodlike swimmers in Couette flow.
    Nili H; Kheyri M; Abazari J; Fahimniya A; Naji A
    Soft Matter; 2017 Jun; 13(25):4494-4506. PubMed ID: 28584884
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Metallic microswimmers driven up the wall by gravity.
    Brosseau Q; Usabiaga FB; Lushi E; Wu Y; Ristroph L; Ward MD; Shelley MJ; Zhang J
    Soft Matter; 2021 Jul; 17(27):6597-6602. PubMed ID: 34259695
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A microfluidic device for quantitative investigation of zebrafish larvae's rheotaxis.
    Peimani AR; Zoidl G; Rezai P
    Biomed Microdevices; 2017 Nov; 19(4):99. PubMed ID: 29116415
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Dynamics of ellipsoidal tracers in swimming algal suspensions.
    Yang O; Peng Y; Liu Z; Tang C; Xu X; Cheng X
    Phys Rev E; 2016 Oct; 94(4-1):042601. PubMed ID: 27841492
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Detention Times of Microswimmers Close to Surfaces: Influence of Hydrodynamic Interactions and Noise.
    Schaar K; Zöttl A; Stark H
    Phys Rev Lett; 2015 Jul; 115(3):038101. PubMed ID: 26230827
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Near-wall rheotaxis of the ciliate
    Ohmura T; Nishigami Y; Taniguchi A; Nonaka S; Ishikawa T; Ichikawa M
    Sci Adv; 2021 Oct; 7(43):eabi5878. PubMed ID: 34669467
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Experimental observation of flow fields around active Janus spheres.
    Campbell AI; Ebbens SJ; Illien P; Golestanian R
    Nat Commun; 2019 Sep; 10(1):3952. PubMed ID: 31477703
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Flow fields around pinned self-thermophoretic microswimmers under confinement.
    Bregulla AP; Cichos F
    J Chem Phys; 2019 Jul; 151(4):044706. PubMed ID: 31370563
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Impact of external flow on the dynamics of swimming microorganisms near surfaces.
    Chilukuri S; Collins CH; Underhill PT
    J Phys Condens Matter; 2014 Mar; 26(11):115101. PubMed ID: 24590066
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Hydrodynamic self-assembly of active colloids: chiral spinners and dynamic crystals.
    Shen Z; Würger A; Lintuvuori JS
    Soft Matter; 2019 Feb; 15(7):1508-1521. PubMed ID: 30672958
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Competing chemical and hydrodynamic interactions in autophoretic colloidal suspensions.
    Singh R; Adhikari R; Cates ME
    J Chem Phys; 2019 Jul; 151(4):044901. PubMed ID: 31370557
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Direct upstream motility in Escherichia coli.
    Kaya T; Koser H
    Biophys J; 2012 Apr; 102(7):1514-23. PubMed ID: 22500751
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Numerical investigation of the hydrodynamics of anguilliform swimming in the transitional and inertial flow regimes.
    Borazjani I; Sotiropoulos F
    J Exp Biol; 2009 Feb; 212(Pt 4):576-92. PubMed ID: 19181905
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Self-propulsion in 2D confinement: phoretic and hydrodynamic interactions.
    Choudhary A; Chaithanya KVS; Michelin S; Pushpavanam S
    Eur Phys J E Soft Matter; 2021 Jul; 44(7):97. PubMed ID: 34283325
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.