These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

246 related articles for article (PubMed ID: 31702783)

  • 1. The Rhododendron Genome and Chromosomal Organization Provide Insight into Shared Whole-Genome Duplications across the Heath Family (Ericaceae).
    Soza VL; Lindsley D; Waalkes A; Ramage E; Patwardhan RP; Burton JN; Adey A; Kumar A; Qiu R; Shendure J; Hall B
    Genome Biol Evol; 2019 Dec; 11(12):3353-3371. PubMed ID: 31702783
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The draft genome assembly of Rhododendron delavayi Franch. var. delavayi.
    Zhang L; Xu P; Cai Y; Ma L; Li S; Li S; Xie W; Song J; Peng L; Yan H; Zou L; Ma Y; Zhang C; Gao Q; Wang J
    Gigascience; 2017 Oct; 6(10):1-11. PubMed ID: 29020749
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chromosome-level genome assembly of a parent species of widely cultivated azaleas.
    Yang FS; Nie S; Liu H; Shi TL; Tian XC; Zhou SS; Bao YT; Jia KH; Guo JF; Zhao W; An N; Zhang RG; Yun QZ; Wang XZ; Mannapperuma C; Porth I; El-Kassaby YA; Street NR; Wang XR; Van de Peer Y; Mao JF
    Nat Commun; 2020 Oct; 11(1):5269. PubMed ID: 33077749
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chromosome-level genome assembly and population genetic analysis of a critically endangered rhododendron provide insights into its conservation.
    Ma H; Liu Y; Liu D; Sun W; Liu X; Wan Y; Zhang X; Zhang R; Yun Q; Wang J; Li Z; Ma Y
    Plant J; 2021 Sep; 107(5):1533-1545. PubMed ID: 34189793
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The chromosome-scale genome assembly, annotation and evolution of Rhododendron henanense subsp. lingbaoense.
    Zhou XJ; Li JT; Wang HL; Han JW; Zhang K; Dong SW; Zhang YZ; Ya HY; Cheng YW; Sun SS
    Mol Ecol Resour; 2022 Apr; 22(3):988-1001. PubMed ID: 34652864
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Whole-genome sequencing and analysis of two azaleas, Rhododendron ripense and Rhododendron kiyosumense.
    Shirasawa K; Kobayashi N; Nakatsuka A; Ohta H; Isobe S
    DNA Res; 2021 Sep; 28(5):. PubMed ID: 34289022
    [TBL] [Abstract][Full Text] [Related]  

  • 7. De novo SNP discovery and genetic linkage mapping in poplar using restriction site associated DNA and whole-genome sequencing technologies.
    Mousavi M; Tong C; Liu F; Tao S; Wu J; Li H; Shi J
    BMC Genomics; 2016 Aug; 17():656. PubMed ID: 27538483
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chromosome-scale genome assembly of Rhododendron molle provides insights into its evolution and terpenoid biosynthesis.
    Zhou GL; Li Y; Pei F; Gong T; Chen TJ; Chen JJ; Yang JL; Li QH; Yu SS; Zhu P
    BMC Plant Biol; 2022 Jul; 22(1):342. PubMed ID: 35836128
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vitro, long-range sequence information for de novo genome assembly via transposase contiguity.
    Adey A; Kitzman JO; Burton JN; Daza R; Kumar A; Christiansen L; Ronaghi M; Amini S; Gunderson KL; Steemers FJ; Shendure J
    Genome Res; 2014 Dec; 24(12):2041-9. PubMed ID: 25327137
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pseudo-chromosome-length genome assembly of a double haploid "Bartlett" pear (Pyrus communis L.).
    Linsmith G; Rombauts S; Montanari S; Deng CH; Celton JM; Guérif P; Liu C; Lohaus R; Zurn JD; Cestaro A; Bassil NV; Bakker LV; Schijlen E; Gardiner SE; Lespinasse Y; Durel CE; Velasco R; Neale DB; Chagné D; Van de Peer Y; Troggio M; Bianco L
    Gigascience; 2019 Dec; 8(12):. PubMed ID: 31816089
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The complete chloroplast genome of
    Zhou D; Wang J; Zhou F; Li Z; Qi Y; Hu T
    Mitochondrial DNA B Resour; 2024; 9(8):1058-1062. PubMed ID: 39155916
    [No Abstract]   [Full Text] [Related]  

  • 12. Discovery of high-confidence single nucleotide polymorphisms from large-scale de novo analysis of leaf transcripts of Aegilops tauschii, a wild wheat progenitor.
    Iehisa JC; Shimizu A; Sato K; Nasuda S; Takumi S
    DNA Res; 2012 Dec; 19(6):487-97. PubMed ID: 23125207
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Rhododendron Plant Genome Database (RPGD): a comprehensive online omics database for Rhododendron.
    Liu N; Zhang L; Zhou Y; Tu M; Wu Z; Gui D; Ma Y; Wang J; Zhang C
    BMC Genomics; 2021 May; 22(1):376. PubMed ID: 34022814
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Contrasting a reference cranberry genome to a crop wild relative provides insights into adaptation, domestication, and breeding.
    Kawash J; Colt K; Hartwick NT; Abramson BW; Vorsa N; Polashock JJ; Michael TP
    PLoS One; 2022; 17(3):e0264966. PubMed ID: 35255111
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chromosome arm-specific BAC end sequences permit comparative analysis of homoeologous chromosomes and genomes of polyploid wheat.
    Sehgal SK; Li W; Rabinowicz PD; Chan A; Simková H; Doležel J; Gill BS
    BMC Plant Biol; 2012 May; 12():64. PubMed ID: 22559868
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evolutionary history of two evergreen
    Wu X; Zhang L; Wang X; Zhang R; Jin G; Hu Y; Yang H; Wu Z; Ma Y; Zhang C; Wang J
    Front Plant Sci; 2023; 14():1123707. PubMed ID: 37025132
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Syntenic relationships between Medicago truncatula and Arabidopsis reveal extensive divergence of genome organization.
    Zhu H; Kim DJ; Baek JM; Choi HK; Ellis LC; Küester H; McCombie WR; Peng HM; Cook DR
    Plant Physiol; 2003 Mar; 131(3):1018-26. PubMed ID: 12644654
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development and characterization of microsatellite markers for Rhododendron purdomii (Ericaceae) using next-generation sequencing.
    Zhang N; Qin M; Zhu S; Huang Z; Dong H; Yang Y; Yang L; Lu Y
    Genes Genet Syst; 2022 Feb; 96(5):253-257. PubMed ID: 34911871
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exploiting genotyping by sequencing to characterize the genomic structure of the American cranberry through high-density linkage mapping.
    Covarrubias-Pazaran G; Diaz-Garcia L; Schlautman B; Deutsch J; Salazar W; Hernandez-Ochoa M; Grygleski E; Steffan S; Iorizzo M; Polashock J; Vorsa N; Zalapa J
    BMC Genomics; 2016 Jun; 17():451. PubMed ID: 27295982
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Next-generation sequencing, FISH mapping and synteny-based modeling reveal mechanisms of decreasing dysploidy in Cucumis.
    Yang L; Koo DH; Li D; Zhang T; Jiang J; Luan F; Renner SS; Hénaff E; Sanseverino W; Garcia-Mas J; Casacuberta J; Senalik DA; Simon PW; Chen J; Weng Y
    Plant J; 2014 Jan; 77(1):16-30. PubMed ID: 24127692
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.