These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 31702886)

  • 1. Scalable Fabrication of Resilient SiC Nanowires Aerogels with Exceptional High-Temperature Stability.
    Lu D; Su L; Wang H; Niu M; Xu L; Ma M; Gao H; Cai Z; Fan X
    ACS Appl Mater Interfaces; 2019 Dec; 11(48):45338-45344. PubMed ID: 31702886
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Additive Manufacturing of Resilient SiC Nanowire Aerogels.
    Guo P; Su L; Peng K; Lu D; Xu L; Li M; Wang H
    ACS Nano; 2022 Apr; 16(4):6625-6633. PubMed ID: 35404589
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ultralight, Recoverable, and High-Temperature-Resistant SiC Nanowire Aerogel.
    Su L; Wang H; Niu M; Fan X; Ma M; Shi Z; Guo SW
    ACS Nano; 2018 Apr; 12(4):3103-3111. PubMed ID: 29513010
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Anisotropic and hierarchical SiC@SiO
    Su L; Wang H; Niu M; Dai S; Cai Z; Yang B; Huyan H; Pan X
    Sci Adv; 2020 Jun; 6(26):eaay6689. PubMed ID: 32637589
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Resilient Si
    Su L; Li M; Wang H; Niu M; Lu D; Cai Z
    ACS Appl Mater Interfaces; 2019 May; 11(17):15795-15803. PubMed ID: 30964250
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Highly Stretchable, Crack-Insensitive and Compressible Ceramic Aerogel.
    Su L; Wang H; Jia S; Dai S; Niu M; Ren J; Lu X; Cai Z; Lu D; Li M; Xu L; Guo SW; Zhuang L; Peng K
    ACS Nano; 2021 Nov; 15(11):18354-18362. PubMed ID: 34766747
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Three-Dimensional Reticulated, Spongelike, Resilient Aerogels Assembled by SiC/Si
    Zhang X; Zhang Y; Qu YN; Wu JM; Zhang S; Yang J
    Nano Lett; 2021 May; 21(10):4167-4175. PubMed ID: 34000191
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tailoring Mechanical Properties of a Ceramic Nanowire Aerogel with Pyrolytic Carbon for In Situ Resilience at 1400 °C.
    Ni H; Lu D; Zhuang L; Guo P; Xu L; Li M; Hu W; Ni Z; Su L; Peng K; Wang H
    ACS Nano; 2024 Jun; 18(24):15950-15957. PubMed ID: 38847327
    [TBL] [Abstract][Full Text] [Related]  

  • 9. All-Ceramic SiC Aerogel for Wide Temperature Range Electromagnetic Wave Attenuation.
    Lan X; Hou Y; Dong X; Yang Z; Thai BQ; Yang Y; Zhai W
    ACS Appl Mater Interfaces; 2022 Apr; 14(13):15360-15369. PubMed ID: 35315653
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Insulating and Robust Ceramic Nanorod Aerogels with High-Temperature Resistance over 1400 °C.
    Zhang E; Zhang W; Lv T; Li J; Dai J; Zhang F; Zhao Y; Yang J; Li W; Zhang H
    ACS Appl Mater Interfaces; 2021 May; 13(17):20548-20558. PubMed ID: 33877815
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reduced graphene oxide/SiC nanowire composite aerogel prepared by a hydrothermal method with excellent thermal insulation performance and electromagnetic wave absorption performance.
    Wang Z; Li R; Liu H; Liu X; Zheng F; Yu C
    Nanotechnology; 2024 Jan; 35(13):. PubMed ID: 38134441
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biomass-derived lightweight SiC aerogels for superior thermal insulation.
    Zheng C; Li X; Yu J; Huang Z; Li M; Hu X; Li Y
    Nanoscale; 2024 Feb; 16(9):4600-4608. PubMed ID: 38345528
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hierarchical Cellular Structured Ceramic Nanofibrous Aerogels with Temperature-Invariant Superelasticity for Thermal Insulation.
    Dou L; Zhang X; Cheng X; Ma Z; Wang X; Si Y; Yu J; Ding B
    ACS Appl Mater Interfaces; 2019 Aug; 11(32):29056-29064. PubMed ID: 31330101
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Strong yet flexible ceramic aerogel.
    Su L; Jia S; Ren J; Lu X; Guo SW; Guo P; Cai Z; Lu D; Niu M; Zhuang L; Peng K; Wang H
    Nat Commun; 2023 Nov; 14(1):7057. PubMed ID: 37923727
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Elastic SiC Aerogel for Thermal Insulation: A Systematic Review.
    Zhang X; Yu J; Zhao C; Si Y
    Small; 2024 Mar; ():e2311464. PubMed ID: 38511588
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ultralight and fire-resistant ceramic nanofibrous aerogels with temperature-invariant superelasticity.
    Si Y; Wang X; Dou L; Yu J; Ding B
    Sci Adv; 2018 Apr; 4(4):eaas8925. PubMed ID: 29719867
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bioinspired Ultralight Inorganic Aerogel for Highly Efficient Air Filtration and Oil-Water Separation.
    Zhang YG; Zhu YJ; Xiong ZC; Wu J; Chen F
    ACS Appl Mater Interfaces; 2018 Apr; 10(15):13019-13027. PubMed ID: 29611706
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ultralight Ceramic Fiber Aerogel for High-Temperature Thermal Superinsulation.
    Liu F; He C; Jiang Y; Feng J; Li L; Tang G; Feng J
    Nanomaterials (Basel); 2023 Apr; 13(8):. PubMed ID: 37110890
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 3D-Printed Mullite-Reinforced SiC-Based Aerogel Composites.
    Miao M; Yin J; Mao Z; Chen Y; Lu J
    Small; 2024 May; ():e2401742. PubMed ID: 38721985
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Implementing an Air Suction Effect Induction Strategy to Create Super Thermally Insulating and Superelastic SiC Aerogels.
    Yan M; Zhang H; Fu Y; Pan Y; Lun Z; Zhang Z; He P; Cheng X
    Small; 2022 May; 18(19):e2201039. PubMed ID: 35419970
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.