These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
164 related articles for article (PubMed ID: 31702910)
1. Molecular Characterization of the Thaumatin-like Protein PR-NP24 in Tomato Fruits. An M; Tong Z; Ding C; Wang Z; Sun H; Xia Z; Qi M; Wu Y; Liang Y J Agric Food Chem; 2019 Nov; 67(47):13001-13009. PubMed ID: 31702910 [TBL] [Abstract][Full Text] [Related]
2. CRISPR/Cas9-Mediated Shu P; Li Z; Min D; Zhang X; Ai W; Li J; Zhou J; Li Z; Li F; Li X J Agric Food Chem; 2020 May; 68(20):5529-5538. PubMed ID: 32372640 [TBL] [Abstract][Full Text] [Related]
3. Melatonin Induces Disease Resistance to Botrytis cinerea in Tomato Fruit by Activating Jasmonic Acid Signaling Pathway. Liu C; Chen L; Zhao R; Li R; Zhang S; Yu W; Sheng J; Shen L J Agric Food Chem; 2019 Jun; 67(22):6116-6124. PubMed ID: 31084000 [TBL] [Abstract][Full Text] [Related]
4. SlERF2 Is Associated with Methyl Jasmonate-Mediated Defense Response against Botrytis cinerea in Tomato Fruit. Yu W; Zhao R; Sheng J; Shen L J Agric Food Chem; 2018 Sep; 66(38):9923-9932. PubMed ID: 30192535 [TBL] [Abstract][Full Text] [Related]
5. Inhibition of SlMPK1, SlMPK2, and SlMPK3 Disrupts Defense Signaling Pathways and Enhances Tomato Fruit Susceptibility to Botrytis cinerea. Zheng Y; Yang Y; Liu C; Chen L; Sheng J; Shen L J Agric Food Chem; 2015 Jun; 63(22):5509-17. PubMed ID: 25910076 [TBL] [Abstract][Full Text] [Related]
6. Knockout of SlMAPK3 Reduced Disease Resistance to Botrytis cinerea in Tomato Plants. Zhang S; Wang L; Zhao R; Yu W; Li R; Li Y; Sheng J; Shen L J Agric Food Chem; 2018 Aug; 66(34):8949-8956. PubMed ID: 30092129 [TBL] [Abstract][Full Text] [Related]
7. Tomato NAC transcription factor SlSRN1 positively regulates defense response against biotic stress but negatively regulates abiotic stress response. Liu B; Ouyang Z; Zhang Y; Li X; Hong Y; Huang L; Liu S; Zhang H; Li D; Song F PLoS One; 2014; 9(7):e102067. PubMed ID: 25010573 [TBL] [Abstract][Full Text] [Related]
8. Role of dioxygenase α-DOX2 and SA in basal response and in hexanoic acid-induced resistance of tomato (Solanum lycopersicum) plants against Botrytis cinerea. Angulo C; de la O Leyva M; Finiti I; López-Cruz J; Fernández-Crespo E; García-Agustín P; González-Bosch C J Plant Physiol; 2015 Mar; 175():163-73. PubMed ID: 25543862 [TBL] [Abstract][Full Text] [Related]
9. The dual role of oxalic acid on the resistance of tomato against Botrytis cinerea. Sun G; Feng C; Zhang A; Zhang Y; Chang D; Wang Y; Ma Q World J Microbiol Biotechnol; 2019 Feb; 35(2):36. PubMed ID: 30712096 [TBL] [Abstract][Full Text] [Related]
10. Comprehensive analysis of multiprotein bridging factor 1 family genes and SlMBF1c negatively regulate the resistance to Botrytis cinerea in tomato. Zhang X; Xu Z; Chen L; Ren Z BMC Plant Biol; 2019 Oct; 19(1):437. PubMed ID: 31638895 [TBL] [Abstract][Full Text] [Related]
11. Characterization and expression analysis of a thaumatin-like protein PpTLP1 from ground cherry Physalis pubescens. Wang Z; Ding C; Tong Z; Yang L; Xiang S; Liang Y Int J Biol Macromol; 2024 Jan; 254(Pt 1):127731. PubMed ID: 38287567 [TBL] [Abstract][Full Text] [Related]
12. Crystal structure analysis of NP24-I: a thaumatin-like protein. Ghosh R; Chakrabarti C Planta; 2008 Oct; 228(5):883-90. PubMed ID: 18651170 [TBL] [Abstract][Full Text] [Related]
13. Tomato SR/CAMTA transcription factors SlSR1 and SlSR3L negatively regulate disease resistance response and SlSR1L positively modulates drought stress tolerance. Li X; Huang L; Zhang Y; Ouyang Z; Hong Y; Zhang H; Li D; Song F BMC Plant Biol; 2014 Oct; 14():286. PubMed ID: 25348703 [TBL] [Abstract][Full Text] [Related]
15. E3 ligase SlCOP1-1 stabilizes transcription factor SlOpaque2 and enhances fruit resistance to Botrytis cinerea in tomato. Gao G; Zhou L; Liu J; Wang P; Gong P; Tian S; Qin G; Wang W; Wang Y Plant Physiol; 2024 Oct; 196(2):1196-1213. PubMed ID: 39077783 [TBL] [Abstract][Full Text] [Related]
16. Ethylene Perception Is Associated with Methyl-Jasmonate-Mediated Immune Response against Botrytis cinerea in Tomato Fruit. Yu W; Yu M; Zhao R; Sheng J; Li Y; Shen L J Agric Food Chem; 2019 Jun; 67(24):6725-6735. PubMed ID: 31117506 [TBL] [Abstract][Full Text] [Related]
17. Host susceptibility factors render ripe tomato fruit vulnerable to fungal disease despite active immune responses. Silva CJ; van den Abeele C; Ortega-Salazar I; Papin V; Adaskaveg JA; Wang D; Casteel CL; Seymour GB; Blanco-Ulate B J Exp Bot; 2021 Mar; 72(7):2696-2709. PubMed ID: 33462583 [TBL] [Abstract][Full Text] [Related]
18. VqDUF642, a gene isolated from the Chinese grape Vitis quinquangularis, is involved in berry development and pathogen resistance. Xie X; Wang Y Planta; 2016 Nov; 244(5):1075-1094. PubMed ID: 27424038 [TBL] [Abstract][Full Text] [Related]
19. Overexpression of SlMYB75 enhances resistance to Botrytis cinerea and prolongs fruit storage life in tomato. Liu M; Zhang Z; Xu Z; Wang L; Chen C; Ren Z Plant Cell Rep; 2021 Jan; 40(1):43-58. PubMed ID: 32990799 [TBL] [Abstract][Full Text] [Related]
20. Suppression Subtractive Hybridization analysis provides new insights into the tomato (Solanum lycopersicum L.) response to the plant probiotic microorganism Trichoderma longibrachiatum MK1. De Palma M; D'Agostino N; Proietti S; Bertini L; Lorito M; Ruocco M; Caruso C; Chiusano ML; Tucci M J Plant Physiol; 2016 Jan; 190():79-94. PubMed ID: 26705844 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]