These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
230 related articles for article (PubMed ID: 31702925)
1. Probing the "Gas Tunnel" between Neighboring Nanobubbles. Li D; Zeng B; Wang Y Langmuir; 2019 Nov; 35(47):15029-15037. PubMed ID: 31702925 [TBL] [Abstract][Full Text] [Related]
2. Study on Nanobubble-on-Pancake Objects Forming at Polystyrene/Water Interface. Li D; Pan Y; Zhao X; Bhushan B Langmuir; 2016 Nov; 32(43):11256-11264. PubMed ID: 27391804 [TBL] [Abstract][Full Text] [Related]
3. Leakiness of Pinned Neighboring Surface Nanobubbles Induced by Strong Gas-Surface Interaction. Maheshwari S; van der Hoef M; Rodrı Guez Rodrı Guez J; Lohse D ACS Nano; 2018 Mar; 12(3):2603-2609. PubMed ID: 29438620 [TBL] [Abstract][Full Text] [Related]
4. Progress on the Surface Nanobubble Story: What is in the bubble? Why does it exist? Peng H; Birkett GR; Nguyen AV Adv Colloid Interface Sci; 2015 Aug; 222():573-80. PubMed ID: 25267688 [TBL] [Abstract][Full Text] [Related]
5. The interplay among gas, liquid and solid interactions determines the stability of surface nanobubbles. Tortora M; Meloni S; Tan BH; Giacomello A; Ohl CD; Casciola CM Nanoscale; 2020 Nov; 12(44):22698-22709. PubMed ID: 33169778 [TBL] [Abstract][Full Text] [Related]
6. Properties of Blisters Formed on Polymer Films and Differentiating them from Nanobubbles/Nanodrops. Li D; Liu Y; Qi L; Gu J; Tang Q; Wang X; Bhushan B Langmuir; 2019 Feb; 35(8):3005-3012. PubMed ID: 30712347 [TBL] [Abstract][Full Text] [Related]
7. Dynamic interplay between interfacial nanobubbles: oversaturation promotes anisotropic depinning and bubble coalescence. Nag S; Tomo Y; Teshima H; Takahashi K; Kohno M Phys Chem Chem Phys; 2021 Nov; 23(43):24652-24660. PubMed ID: 34704571 [TBL] [Abstract][Full Text] [Related]
8. Characterization of the interaction between AFM tips and surface nanobubbles. Walczyk W; Schönherr H Langmuir; 2014 Jun; 30(24):7112-26. PubMed ID: 24856074 [TBL] [Abstract][Full Text] [Related]
9. Study on the Formation and Properties of Trapped Nanobubbles and Surface Nanobubbles by Spontaneous and Temperature Difference Methods. Li D; Qi L; Liu Y; Bhushan B; Gu J; Dong J Langmuir; 2019 Sep; 35(37):12035-12041. PubMed ID: 31424216 [TBL] [Abstract][Full Text] [Related]
10. Pinning and gas oversaturation imply stable single surface nanobubbles. Lohse D; Zhang X Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Mar; 91(3):031003. PubMed ID: 25871042 [TBL] [Abstract][Full Text] [Related]
11. Surface charge-induced EDL interaction on the contact angle of surface nanobubbles. Jing D; Li D; Pan Y; Bhushan B Langmuir; 2016 Nov; 32(43):11123-11132. PubMed ID: 27258966 [TBL] [Abstract][Full Text] [Related]
12. Theoretical model of dynamics and stability of nanobubbles on heterogeneous surfaces. Lan L; Pan Y; Zhou L; Kuang H; Zhang L; Wen B J Colloid Interface Sci; 2025 Jan; 678(Pt A):322-333. PubMed ID: 39208760 [TBL] [Abstract][Full Text] [Related]
13. Controllable generation of interfacial gas structures on the graphite surface by substrate hydrophobicity and gas oversaturation in water. Fang H; Geng Z; Guan N; Zhou L; Zhang L; Hu J Soft Matter; 2022 Nov; 18(43):8251-8261. PubMed ID: 36278324 [TBL] [Abstract][Full Text] [Related]
14. Formation of surface nanobubbles and the universality of their contact angles: a molecular dynamics approach. Weijs JH; Snoeijer JH; Lohse D Phys Rev Lett; 2012 Mar; 108(10):104501. PubMed ID: 22463413 [TBL] [Abstract][Full Text] [Related]
15. Investigating Interfacial Effects on Surface Nanobubbles without Pinning Using Molecular Dynamics Simulation. Chen YX; Chen YL; Yen TH Langmuir; 2018 Dec; 34(50):15360-15369. PubMed ID: 30480451 [TBL] [Abstract][Full Text] [Related]
16. Removal of induced nanobubbles from water/graphite interfaces by partial degassing. Zhang XH; Li G; Maeda N; Hu J Langmuir; 2006 Oct; 22(22):9238-43. PubMed ID: 17042536 [TBL] [Abstract][Full Text] [Related]
17. Dimensions and the profile of surface nanobubbles: tip-nanobubble interactions and nanobubble deformation in atomic force microscopy. Walczyk W; Schönherr H Langmuir; 2014 Oct; 30(40):11955-65. PubMed ID: 25222759 [TBL] [Abstract][Full Text] [Related]
18. AFM Study of Surface Nanobubbles on Binary Self-Assembled Monolayers on Ultraflat Gold with Identical Macroscopic Static Water Contact Angles and Different Terminal Functional Groups. Song B; Chen K; Schmittel M; Schönherr H Langmuir; 2016 Nov; 32(43):11172-11178. PubMed ID: 27297876 [TBL] [Abstract][Full Text] [Related]
19. Interfacial gas nanobubbles or oil nanodroplets? Wang X; Zhao B; Hu J; Wang S; Tai R; Gao X; Zhang L Phys Chem Chem Phys; 2017 Jan; 19(2):1108-1114. PubMed ID: 27942625 [TBL] [Abstract][Full Text] [Related]
20. Nanobubbles do not sit alone at the solid-liquid interface. Peng H; Hampton MA; Nguyen AV Langmuir; 2013 May; 29(20):6123-30. PubMed ID: 23597206 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]