These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

258 related articles for article (PubMed ID: 31702972)

  • 1. Disentangling the Gordian knot of local metabolic control of coronary blood flow.
    Tune JD; Goodwill AG; Kiel AM; Baker HE; Bender SB; Merkus D; Duncker DJ
    Am J Physiol Heart Circ Physiol; 2020 Jan; 318(1):H11-H24. PubMed ID: 31702972
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Local metabolic hypothesis is not sufficient to explain coronary autoregulatory behavior.
    Kiel AM; Goodwill AG; Baker HE; Dick GM; Tune JD
    Basic Res Cardiol; 2018 Aug; 113(5):33. PubMed ID: 30073416
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regulation of coronary blood flow during exercise.
    Duncker DJ; Bache RJ
    Physiol Rev; 2008 Jul; 88(3):1009-86. PubMed ID: 18626066
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Myocardial and systemic hemodynamics during isovolemic hemodilution alone and combined with nitroprusside-induced controlled hypotension.
    Crystal GJ; Salem MR
    Anesth Analg; 1991 Feb; 72(2):227-37. PubMed ID: 1898689
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A mathematical model of coronary blood flow control: simulation of patient-specific three-dimensional hemodynamics during exercise.
    Arthurs CJ; Lau KD; Asrress KN; Redwood SR; Figueroa CA
    Am J Physiol Heart Circ Physiol; 2016 May; 310(9):H1242-58. PubMed ID: 26945076
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Relationship between myocardial oxygenation and blood pressure: Experimental validation using oxygenation-sensitive cardiovascular magnetic resonance.
    Guensch DP; Fischer K; Jung C; Hurni S; Winkler BM; Jung B; Vogt AP; Eberle B
    PLoS One; 2019; 14(1):e0210098. PubMed ID: 30650118
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A critical appraisal of the rate pressure product as index of myocardial oxygen consumption for the study of metabolic coronary flow regulation.
    Kal JE; Van Wezel HB; Vergroesen I
    Int J Cardiol; 1999 Oct; 71(2):141-8. PubMed ID: 10574399
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Oxygen-sensing pathways below autoregulatory threshold act to sustain myocardial oxygen delivery during reductions in perfusion pressure.
    Warne CM; Essajee SI; Tucker SM; Figueroa CA; Beard DA; Dick GM; Tune JD
    Basic Res Cardiol; 2023 Mar; 118(1):12. PubMed ID: 36988670
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Myocardial oxygen consumption and segmental shortening during selective coronary hemodilution in dogs.
    Crystal GJ; Salem MR
    Anesth Analg; 1988 Jun; 67(6):500-8. PubMed ID: 3377204
    [TBL] [Abstract][Full Text] [Related]  

  • 10. PET contributions to understanding normal and abnormal cardiac perfusion and metabolism.
    Schelbert HR
    Ann Biomed Eng; 2000 Aug; 28(8):922-9. PubMed ID: 11144676
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Oxygen and coronary vascular resistance during autoregulation and metabolic vasodilation in the dog.
    Drake-Holland AJ; Laird JD; Noble MI; Spaan JA; Vergroesen I
    J Physiol; 1984 Mar; 348():285-99. PubMed ID: 6716287
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of high arterial oxygen tension on function, blood flow distribution, and metabolism in ischemic myocardium.
    Cason BA; Wisneski JA; Neese RA; Stanley WC; Hickey RF; Shnier CB; Gertz EW
    Circulation; 1992 Feb; 85(2):828-38. PubMed ID: 1735173
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Open-loop (feed-forward) and feedback control of coronary blood flow during exercise, cardiac pacing, and pressure changes.
    Pradhan RK; Feigl EO; Gorman MW; Brengelmann GL; Beard DA
    Am J Physiol Heart Circ Physiol; 2016 Jun; 310(11):H1683-94. PubMed ID: 27037372
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adaptive responses of coronary circulation and myocardium to chronic reduction in perfusion pressure and flow.
    Mills I; Fallon JT; Wrenn D; Sasken H; Gray W; Bier J; Levine D; Berman S; Gilson M; Gewirtz H
    Am J Physiol; 1994 Feb; 266(2 Pt 2):H447-57. PubMed ID: 8141345
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of nitroglycerin on pacing-induced changes in myocardial oxygen consumption and metabolic coronary vasodilation in patients with coronary artery disease.
    Kal JE; Vergroesen I; van Wezel HB
    Anesth Analg; 1999 Feb; 88(2):271-8. PubMed ID: 9972740
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Myocardial blood flow and oxygen consumption during isovolemic hemodilution alone and in combination with adenosine-induced controlled hypotension.
    Crystal GJ; Rooney MW; Salem MR
    Anesth Analg; 1988 Jun; 67(6):539-47. PubMed ID: 3377208
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulation of myocardial blood flow by oxygen consumption is maintained in the failing heart during exercise.
    Traverse JH; Melchert P; Pierpont GL; Jones B; Crampton M; Bache RJ
    Circ Res; 1999 Mar; 84(4):401-8. PubMed ID: 10066674
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of K+ATP channels in local metabolic coronary vasodilation.
    Richmond KN; Tune JD; Gorman MW; Feigl EO
    Am J Physiol; 1999 Dec; 277(6):H2115-23. PubMed ID: 10600828
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metabolism in non-ischemic myocardium during coronary artery occlusion and reperfusion.
    Buxton DB; Mody FV; Krivokapich J; Schelbert HR
    J Mol Cell Cardiol; 1993 Jun; 25(6):667-81. PubMed ID: 8411193
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Alteration in oxyhemoglobin equilibrium (P-50) and myocardial oxygen consumption (MVO2) by nitroglycerin (GTN).
    Gross GJ; Hardman HF
    J Pharmacol Exp Ther; 1975 May; 193(2):346-55. PubMed ID: 806676
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.