These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
382 related articles for article (PubMed ID: 31703174)
1. An FPGA Implementation of Deep Spiking Neural Networks for Low-Power and Fast Classification. Ju X; Fang B; Yan R; Xu X; Tang H Neural Comput; 2020 Jan; 32(1):182-204. PubMed ID: 31703174 [TBL] [Abstract][Full Text] [Related]
2. An FPGA implementation of Bayesian inference with spiking neural networks. Li H; Wan B; Fang Y; Li Q; Liu JK; An L Front Neurosci; 2023; 17():1291051. PubMed ID: 38249589 [TBL] [Abstract][Full Text] [Related]
3. A Cost-Efficient High-Speed VLSI Architecture for Spiking Convolutional Neural Network Inference Using Time-Step Binary Spike Maps. Zhang L; Yang J; Shi C; Lin Y; He W; Zhou X; Yang X; Liu L; Wu N Sensors (Basel); 2021 Sep; 21(18):. PubMed ID: 34577214 [TBL] [Abstract][Full Text] [Related]
4. Optimizing Deeper Spiking Neural Networks for Dynamic Vision Sensing. Kim Y; Panda P Neural Netw; 2021 Dec; 144():686-698. PubMed ID: 34662827 [TBL] [Abstract][Full Text] [Related]
5. On-Chip Training Spiking Neural Networks Using Approximated Backpropagation With Analog Synaptic Devices. Kwon D; Lim S; Bae JH; Lee ST; Kim H; Seo YT; Oh S; Kim J; Yeom K; Park BG; Lee JH Front Neurosci; 2020; 14():423. PubMed ID: 32733180 [TBL] [Abstract][Full Text] [Related]
6. SSTDP: Supervised Spike Timing Dependent Plasticity for Efficient Spiking Neural Network Training. Liu F; Zhao W; Chen Y; Wang Z; Yang T; Jiang L Front Neurosci; 2021; 15():756876. PubMed ID: 34803591 [TBL] [Abstract][Full Text] [Related]
7. Analyzing and Accelerating the Bottlenecks of Training Deep SNNs With Backpropagation. Chen R; Li L Neural Comput; 2020 Dec; 32(12):2557-2600. PubMed ID: 32946710 [TBL] [Abstract][Full Text] [Related]
8. Training Deep Spiking Neural Networks Using Backpropagation. Lee JH; Delbruck T; Pfeiffer M Front Neurosci; 2016; 10():508. PubMed ID: 27877107 [TBL] [Abstract][Full Text] [Related]
9. Spike-Train Level Direct Feedback Alignment: Sidestepping Backpropagation for On-Chip Training of Spiking Neural Nets. Lee J; Zhang R; Zhang W; Liu Y; Li P Front Neurosci; 2020; 14():143. PubMed ID: 32231513 [TBL] [Abstract][Full Text] [Related]
10. A Scatter-and-Gather Spiking Convolutional Neural Network on a Reconfigurable Neuromorphic Hardware. Zou C; Cui X; Kuang Y; Liu K; Wang Y; Wang X; Huang R Front Neurosci; 2021; 15():694170. PubMed ID: 34867142 [TBL] [Abstract][Full Text] [Related]
11. SpQuant-SNN: ultra-low precision membrane potential with sparse activations unlock the potential of on-device spiking neural networks applications. Hasssan A; Meng J; Anupreetham A; Seo JS Front Neurosci; 2024; 18():1440000. PubMed ID: 39296710 [TBL] [Abstract][Full Text] [Related]
12. Boosting Throughput and Efficiency of Hardware Spiking Neural Accelerators Using Time Compression Supporting Multiple Spike Codes. Xu C; Zhang W; Liu Y; Li P Front Neurosci; 2020; 14():104. PubMed ID: 32140093 [TBL] [Abstract][Full Text] [Related]
13. Enabling Spike-Based Backpropagation for Training Deep Neural Network Architectures. Lee C; Sarwar SS; Panda P; Srinivasan G; Roy K Front Neurosci; 2020; 14():119. PubMed ID: 32180697 [TBL] [Abstract][Full Text] [Related]
14. Exploring Optimized Spiking Neural Network Architectures for Classification Tasks on Embedded Platforms. Syed T; Kakani V; Cui X; Kim H Sensors (Basel); 2021 May; 21(9):. PubMed ID: 34067080 [TBL] [Abstract][Full Text] [Related]
16. Low-Latency Spiking Neural Networks Using Pre-Charged Membrane Potential and Delayed Evaluation. Hwang S; Chang J; Oh MH; Min KK; Jang T; Park K; Yu J; Lee JH; Park BG Front Neurosci; 2021; 15():629000. PubMed ID: 33679308 [TBL] [Abstract][Full Text] [Related]
17. Supervised Learning in All FeFET-Based Spiking Neural Network: Opportunities and Challenges. Dutta S; Schafer C; Gomez J; Ni K; Joshi S; Datta S Front Neurosci; 2020; 14():634. PubMed ID: 32670012 [TBL] [Abstract][Full Text] [Related]
18. Effective Plug-Ins for Reducing Inference-Latency of Spiking Convolutional Neural Networks During Inference Phase. Chen X; Yuan X; Fu G; Luo Y; Yue T; Yan F; Wang Y; Pan H Front Comput Neurosci; 2021; 15():697469. PubMed ID: 34733147 [TBL] [Abstract][Full Text] [Related]
19. Design Space Exploration of Hardware Spiking Neurons for Embedded Artificial Intelligence. Abderrahmane N; Lemaire E; Miramond B Neural Netw; 2020 Jan; 121():366-386. PubMed ID: 31593842 [TBL] [Abstract][Full Text] [Related]
20. Probabilistic Spike Propagation for Efficient Hardware Implementation of Spiking Neural Networks. Nallathambi A; Sen S; Raghunathan A; Chandrachoodan N Front Neurosci; 2021; 15():694402. PubMed ID: 34335168 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]