These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 31703222)

  • 1. Uniform β-Na
    Song X; Xiao F; Li X; Li Z
    Nanotechnology; 2020 Feb; 31(9):094001. PubMed ID: 31703222
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Facile Synthesis of Na0.33V2O5 Nanosheet-Graphene Hybrids as Ultrahigh Performance Cathode Materials for Lithium Ion Batteries.
    Lu Y; Wu J; Liu J; Lei M; Tang S; Lu P; Yang L; Yang H; Yang Q
    ACS Appl Mater Interfaces; 2015 Aug; 7(31):17433-40. PubMed ID: 26196059
    [TBL] [Abstract][Full Text] [Related]  

  • 3. New chemical route for the synthesis of β-Na(0.33)V₂O₅ and its fully reversible Li intercalation.
    Kim JK; Senthilkumar B; Sahgong SH; Kim JH; Chi M; Kim Y
    ACS Appl Mater Interfaces; 2015 Apr; 7(12):7025-32. PubMed ID: 25768692
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design and Comparative Study of O3/P2 Hybrid Structures for Room Temperature Sodium-Ion Batteries.
    Qi X; Liu L; Song N; Gao F; Yang K; Lu Y; Yang H; Hu YS; Cheng ZH; Chen L
    ACS Appl Mater Interfaces; 2017 Nov; 9(46):40215-40223. PubMed ID: 29076718
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Practical High-Energy Cathode for Sodium-Ion Batteries Based on Uniform P2-Na
    Fang Y; Yu XY; Lou XWD
    Angew Chem Int Ed Engl; 2017 May; 56(21):5801-5805. PubMed ID: 28436081
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dependence of structure and temperature for lithium-rich layered-spinel microspheres cathode material of lithium ion batteries.
    Wang D; Yu R; Wang X; Ge L; Yang X
    Sci Rep; 2015 Feb; 5():8403. PubMed ID: 25672573
    [TBL] [Abstract][Full Text] [Related]  

  • 7. P2-Type Na0.67Ni0.23Mg0.1Mn0.67O2 as a High-Performance Cathode for a Sodium-Ion Battery.
    Hou H; Gan B; Gong Y; Chen N; Sun C
    Inorg Chem; 2016 Sep; 55(17):9033-7. PubMed ID: 27513524
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Long Straczekite δ-Ca
    Ma Y; Zhou H; Zhang S; Gu S; Cao X; Bao S; Yao H; Ji S; Jin P
    Chemistry; 2017 Sep; 23(53):13221-13232. PubMed ID: 28771852
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultrafast Microwave Synthesis of Carbon-Coated Lithium Vanadium Phosphate Cathode Material for Lithium Ion Batteries.
    Cui X; Tang Z; Ma X; Yan J
    J Nanosci Nanotechnol; 2021 Mar; 21(3):1500-1506. PubMed ID: 33404413
    [TBL] [Abstract][Full Text] [Related]  

  • 10. O3-Type Layered Ni-Rich Oxide: A High-Capacity and Superior-Rate Cathode for Sodium-Ion Batteries.
    Yang J; Tang M; Liu H; Chen X; Xu Z; Huang J; Su Q; Xia Y
    Small; 2019 Dec; 15(52):e1905311. PubMed ID: 31663266
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High Rate, Long Lifespan LiV
    Chen Z; Xu F; Cao S; Li Z; Yang H; Ai X; Cao Y
    Small; 2017 May; 13(18):. PubMed ID: 28263024
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Promoting threshold voltage of P2-Na
    Peng X; Zhang H; Yang C; Lui Z; Lin Z; Lei Y; Zhang S; Li S; Zhang S
    J Colloid Interface Sci; 2024 Apr; 659():422-431. PubMed ID: 38183808
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Heteroaromatic organic compound with conjugated multi-carbonyl as cathode material for rechargeable lithium batteries.
    Lv M; Zhang F; Wu Y; Chen M; Yao C; Nan J; Shu D; Zeng R; Zeng H; Chou SL
    Sci Rep; 2016 Apr; 6():23515. PubMed ID: 27064938
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Facile synthesis and application of CuS nanospheres in aqueous and organic lithium ion batteries.
    Li Q; Xue Y; Zhu Y; Qian Y
    J Nanosci Nanotechnol; 2013 Feb; 13(2):1265-9. PubMed ID: 23646616
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pressure-induced non-superconducting phase of β-Na0.33V2O5 and the mechanism of high-pressure phase transitions in β-Na0.33V2O5 and β-Li0.33V2O5 at room temperature.
    Grzechnik A; Ueda Y; Yamauchi T; Hanfland M; Hering P; Potapkin V; Friese K
    J Phys Condens Matter; 2016 Jan; 28(3):035401. PubMed ID: 26702603
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Simple, Quick and Eco-Friendly Strategy of Synthesis Nanosized α-LiFeO₂ Cathode with Excellent Electrochemical Performance for Lithium-Ion Batteries.
    Hu Y; Zhao H; Liu X
    Materials (Basel); 2018 Jul; 11(7):. PubMed ID: 29996495
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hydrothermal synthesis and electrochemical properties of KMn8O16 nanorods for lithium-ion battery applications.
    Zheng H; Zhang Q; Kim SJ; Jiang X; Dan M; Gao H; Li S; Wang S; Feng C
    J Nanosci Nanotechnol; 2013 Apr; 13(4):2814-8. PubMed ID: 23763165
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Graphene wrapped ordered LiNi0.5Mn1.5O4 nanorods as promising cathode material for lithium-ion batteries.
    Tang X; Jan SS; Qian Y; Xia H; Ni J; Savilov SV; Aldoshin SM
    Sci Rep; 2015 Jul; 5():11958. PubMed ID: 26148558
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of Synthesis Conditions of Na
    Sun Y; Cheng J; Tu Z; Chen M; Huang Q; Wang C; Yan J
    Nanomaterials (Basel); 2023 Dec; 14(1):. PubMed ID: 38202472
    [TBL] [Abstract][Full Text] [Related]  

  • 20. LiV₃O₈/Polytriphenylamine Composites with Enhanced Electrochemical Performances as Cathode Materials for Rechargeable Lithium Batteries.
    Li W; Zhu L; Yu Z; Xie L; Cao X
    Materials (Basel); 2017 Mar; 10(4):. PubMed ID: 28772705
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.