These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 31703253)

  • 1. The Li
    Doppiu S; Dauvergne JL; Serrano A; Palomo Del Barrio E
    Materials (Basel); 2019 Nov; 12(22):. PubMed ID: 31703253
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Solid-State Reactions for the Storage of Thermal Energy.
    Doppiu S; Dauvergne JL; Palomo Del Barrio E
    Nanomaterials (Basel); 2019 Feb; 9(2):. PubMed ID: 30736490
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Study of the Phase Transitions in the Binary System NPG-TRIS for Thermal Energy Storage Applications.
    Santos-Moreno S; Doppiu S; Lopez GA; Marinova N; Serrano Á; Silveira E; Palomo Del Barrio E
    Materials (Basel); 2020 Mar; 13(5):. PubMed ID: 32151040
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Natural Microtubule-Encapsulated Phase-Change Material with Simultaneously High Latent Heat Capacity and Enhanced Thermal Conductivity.
    Song S; Zhao T; Zhu W; Qiu F; Wang Y; Dong L
    ACS Appl Mater Interfaces; 2019 Jun; 11(23):20828-20837. PubMed ID: 31117448
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In-Situ Reaction Method to Synthetize Constant Solid-State Composites as Phase Change Materials for Thermal Energy Storage.
    Yang B; Liu Y; Ye W; Wang Q; Yang X; Yang D
    Materials (Basel); 2021 Oct; 14(20):. PubMed ID: 34683634
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Li
    Mahroug I; Doppiu S; Dauvergne JL; Serrano A; Palomo Del Barrio E
    Nanomaterials (Basel); 2021 May; 11(5):. PubMed ID: 34068103
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermal Properties and the Prospects of Thermal Energy Storage of Mg-25%Cu-15%Zn Eutectic Alloy as Phase Change Material.
    Sun Z; Li L; Cheng X; Zhu J; Li Y; Zhou W
    Materials (Basel); 2021 Jun; 14(12):. PubMed ID: 34203586
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optically-controlled long-term storage and release of thermal energy in phase-change materials.
    Han GGD; Li H; Grossman JC
    Nat Commun; 2017 Nov; 8(1):1446. PubMed ID: 29133908
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Comparative Study on the Thermal Energy Storage Performance of Bio-Based and Paraffin-Based PCMs Using DSC Procedures.
    Sam MN; Caggiano A; Mankel C; Koenders E
    Materials (Basel); 2020 Apr; 13(7):. PubMed ID: 32260573
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Magnetic cellulose nanocrystals hybrids reinforced phase change fiber composites with highly thermal energy storage efficiencies.
    Abdalkarim SYH; Ouyang Z; Yu HY; Li Y; Wang C; Asad RAM; Lu Y; Yao J
    Carbohydr Polym; 2021 Feb; 254():117481. PubMed ID: 33357932
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermal Energy Storage (TES) Prototype Based on Geopolymer Concrete for High-Temperature Applications.
    Rahjoo M; Goracci G; Gaitero JJ; Martauz P; Rojas E; Dolado JS
    Materials (Basel); 2022 Oct; 15(20):. PubMed ID: 36295154
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Emerging Solid-to-Solid Phase-Change Materials for Thermal-Energy Harvesting, Storage, and Utilization.
    Usman A; Xiong F; Aftab W; Qin M; Zou R
    Adv Mater; 2022 Oct; 34(41):e2202457. PubMed ID: 35616900
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermodynamics and performance of the Mg-H-F system for thermochemical energy storage applications.
    Tortoza MS; Humphries TD; Sheppard DA; Paskevicius M; Rowles MR; Sofianos MV; Aguey-Zinsou KF; Buckley CE
    Phys Chem Chem Phys; 2018 Jan; 20(4):2274-2283. PubMed ID: 29303173
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermophysical Characterization of MgCl₂·6H₂O, Xylitol and Erythritol as Phase Change Materials (PCM) for Latent Heat Thermal Energy Storage (LHTES).
    Höhlein S; König-Haagen A; Brüggemann D
    Materials (Basel); 2017 Apr; 10(4):. PubMed ID: 28772806
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Coexistence of Magnetic-Optic-Electric Triple Switching and Thermal Energy Storage in a Multifunctional Plastic Crystal of Trimethylchloromethyl Ammonium Tetrachloroferrate(III).
    Li D; Zhao XM; Zhao HX; Long LS; Zheng LS
    Inorg Chem; 2019 Jan; 58(1):655-662. PubMed ID: 30576116
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Discovery of Salt Hydrates for Thermal Energy Storage.
    Kiyabu S; Girard P; Siegel DJ
    J Am Chem Soc; 2022 Nov; 144(47):21617-21627. PubMed ID: 36394989
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CuSO
    Müller D; Knoll C; Gravogl G; Lager D; Welch JM; Eitenberger E; Friedbacher G; Werner A; Artner W; Harasek M; Miletich R; Weinberger P
    Nanomaterials (Basel); 2020 Dec; 10(12):. PubMed ID: 33322267
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Computationally Predicted High-Throughput Free-Energy Phase Diagrams for the Discovery of Solid-State Hydrogen Storage Reactions.
    Clary JM; Holder AM; Musgrave CB
    ACS Appl Mater Interfaces; 2020 Oct; 12(43):48553-48564. PubMed ID: 33074642
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exploration of Basalt Glasses as High-Temperature Sensible Heat Storage Materials.
    Liu J; Chang Z; Wang L; Xu J; Kuang R; Wu Z
    ACS Omega; 2020 Aug; 5(30):19236-19246. PubMed ID: 32775927
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Investigation on LiBH
    Li Y; Li P; Qu X
    Sci Rep; 2017 Jan; 7():41754. PubMed ID: 28139740
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.