These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 31703279)

  • 1. A Novel Subspace Alignment-Based Interference Suppression Method for the Transfer Caused by Different Sample Carriers in Electronic Nose.
    Liang Z; Tian F; Zhang C; Yang L
    Sensors (Basel); 2019 Nov; 19(22):. PubMed ID: 31703279
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A correlated information removing based interference suppression technique in electronic nose for detection of bacteria.
    Liang Z; Tian F; Zhang C; Sun H; Liu X; Yang SX
    Anal Chim Acta; 2017 Sep; 986():145-152. PubMed ID: 28870320
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Subspace-based interference removal methods for a multichannel biomagnetic sensor array.
    Sekihara K; Nagarajan SS
    J Neural Eng; 2017 Oct; 14(5):051001. PubMed ID: 28820740
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Study on Interference Suppression Algorithms for Electronic Noses: A Review.
    Liang Z; Tian F; Yang SX; Zhang C; Sun H; Liu T
    Sensors (Basel); 2018 Apr; 18(4):. PubMed ID: 29649152
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multiple Mainlobe Interferences Suppression Based on Eigen-Subspace and Eigen-Oblique Projection.
    Ji Y; Lu Y; Wei S; Li Z
    Sensors (Basel); 2022 Nov; 22(21):. PubMed ID: 36366190
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Novel Feature Extraction Approach Using Window Function Capturing and QPSO-SVM for Enhancing Electronic Nose Performance.
    Guo X; Peng C; Zhang S; Yan J; Duan S; Wang L; Jia P; Tian F
    Sensors (Basel); 2015 Jun; 15(7):15198-217. PubMed ID: 26131672
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dual signal subspace projection (DSSP): a novel algorithm for removing large interference in biomagnetic measurements.
    Sekihara K; Kawabata Y; Ushio S; Sumiya S; Kawabata S; Adachi Y; Nagarajan SS
    J Neural Eng; 2016 Jun; 13(3):036007. PubMed ID: 27064933
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Robust recovery of subspace structures by low-rank representation.
    Liu G; Lin Z; Yan S; Sun J; Yu Y; Ma Y
    IEEE Trans Pattern Anal Mach Intell; 2013 Jan; 35(1):171-84. PubMed ID: 22487984
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultrafast magnetic resonance spectroscopic imaging using SPICE with learned subspaces.
    Lam F; Li Y; Guo R; Clifford B; Liang ZP
    Magn Reson Med; 2020 Feb; 83(2):377-390. PubMed ID: 31483526
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Suppression Method of Concentration Background Noise by Transductive Transfer Learning for a Metal Oxide Semiconductor-Based Electronic Nose.
    Liu H; Li Q; Li Z; Gu Y
    Sensors (Basel); 2020 Mar; 20(7):. PubMed ID: 32235507
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Automatic Estimation of the Interference Subspace Dimension Threshold in the Subspace Projection Algorithms of Magnetoencephalography Based on Evoked State Data.
    Zhao R; Wang R; Gao Y; Ning X
    Bioengineering (Basel); 2024 Apr; 11(5):. PubMed ID: 38790295
    [TBL] [Abstract][Full Text] [Related]  

  • 12. On utilizing search methods to select subspace dimensions for kernel-based nonlinear subspace classifiers.
    Kim SW; Oommen BJ
    IEEE Trans Pattern Anal Mach Intell; 2005 Jan; 27(1):136-41. PubMed ID: 15628275
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Subspace based adaptive denoising of surface EMG from neurological injury patients.
    Liu J; Ying D; Zev Rymer W; Zhou P
    J Neural Eng; 2014 Oct; 11(5):056025. PubMed ID: 25242507
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Unsupervised domain adaptation techniques based on auto-encoder for non-stationary EEG-based emotion recognition.
    Chai X; Wang Q; Zhao Y; Liu X; Bai O; Li Y
    Comput Biol Med; 2016 Dec; 79():205-214. PubMed ID: 27810626
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Geographical origin determination of Red Huajiao in China using the electronic nose combined with ensemble recognition algorithm.
    Mao Y; Li N; Shi B; Zhao L; Cheng S; Tian S; Wang H
    J Food Sci; 2021 Nov; 86(11):4922-4931. PubMed ID: 34642944
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ultra-Low-Power E-Nose System Based on Multi-Micro-LED-Integrated, Nanostructured Gas Sensors and Deep Learning.
    Lee K; Cho I; Kang M; Jeong J; Choi M; Woo KY; Yoon KJ; Cho YH; Park I
    ACS Nano; 2023 Jan; 17(1):539-551. PubMed ID: 36534781
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Beamspace dual signal space projection (bDSSP): a method for selective detection of deep sources in MEG measurements.
    Sekihara K; Adachi Y; Kubota HK; Cai C; Nagarajan SS
    J Neural Eng; 2018 Jun; 15(3):036026. PubMed ID: 29526836
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Signal Space Separation Method for a Biomagnetic Sensor Array Arranged on a Flat Plane for Magnetocardiographic Applications: A Computer Simulation Study.
    Sekihara K
    J Healthc Eng; 2018; 2018():7689589. PubMed ID: 29854364
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improved algorithms for the classification of rough rice using a bionic electronic nose based on PCA and the Wilks distribution.
    Xu S; Zhou Z; Lu H; Luo X; Lan Y
    Sensors (Basel); 2014 Mar; 14(3):5486-501. PubMed ID: 24651725
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.