These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

270 related articles for article (PubMed ID: 31703384)

  • 1. Identifying Cancer-Specific circRNA-RBP Binding Sites Based on Deep Learning.
    Wang Z; Lei X; Wu FX
    Molecules; 2019 Nov; 24(22):. PubMed ID: 31703384
    [TBL] [Abstract][Full Text] [Related]  

  • 2. circRNA-binding protein site prediction based on multi-view deep learning, subspace learning and multi-view classifier.
    Li H; Deng Z; Yang H; Pan X; Wei Z; Shen HB; Choi KS; Wang L; Wang S; Wu J
    Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34571539
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CRIP: predicting circRNA-RBP-binding sites using a codon-based encoding and hybrid deep neural networks.
    Zhang K; Pan X; Yang Y; Shen HB
    RNA; 2019 Dec; 25(12):1604-1615. PubMed ID: 31537716
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prediction of RBP binding sites on circRNAs using an LSTM-based deep sequence learning architecture.
    Wang Z; Lei X
    Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 34415289
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transcriptome-wide profiles of circular RNA and RNA-binding protein interactions reveal effects on circular RNA biogenesis and cancer pathway expression.
    Okholm TLH; Sathe S; Park SS; Kamstrup AB; Rasmussen AM; Shankar A; Chua ZM; Fristrup N; Nielsen MM; Vang S; Dyrskjøt L; Aigner S; Damgaard CK; Yeo GW; Pedersen JS
    Genome Med; 2020 Dec; 12(1):112. PubMed ID: 33287884
    [TBL] [Abstract][Full Text] [Related]  

  • 6. iCRBP-LKHA: Large convolutional kernel and hybrid channel-spatial attention for identifying circRNA-RBP interaction sites.
    Yuan L; Zhao L; Lai J; Jiang Y; Zhang Q; Shen Z; Zheng CH; Huang DS
    PLoS Comput Biol; 2024 Aug; 20(8):e1012399. PubMed ID: 39173070
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Decoding protein binding landscape on circular RNAs with base-resolution transformer models.
    Wu H; Liu X; Fang Y; Yang Y; Huang Y; Pan X; Shen HB
    Comput Biol Med; 2024 Mar; 171():108175. PubMed ID: 38402841
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identifying the sequence specificities of circRNA-binding proteins based on a capsule network architecture.
    Wang Z; Lei X
    BMC Bioinformatics; 2021 Jan; 22(1):19. PubMed ID: 33413092
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CRIECNN: Ensemble convolutional neural network and advanced feature extraction methods for the precise forecasting of circRNA-RBP binding sites.
    Lasantha D; Vidanagamachchi S; Nallaperuma S
    Comput Biol Med; 2024 May; 174():108466. PubMed ID: 38615462
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Matrix factorization with neural network for predicting circRNA-RBP interactions.
    Wang Z; Lei X
    BMC Bioinformatics; 2020 Jun; 21(1):229. PubMed ID: 32503474
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Predicting circRNA-RBP Binding Sites Using a Hybrid Deep Neural Network.
    Liu L; Wei Y; Tan Z; Zhang Q; Sun J; Zhao Q
    Interdiscip Sci; 2024 Sep; 16(3):635-648. PubMed ID: 38381315
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CRBPDL: Identification of circRNA-RBP interaction sites using an ensemble neural network approach.
    Niu M; Zou Q; Lin C
    PLoS Comput Biol; 2022 Jan; 18(1):e1009798. PubMed ID: 35051187
    [TBL] [Abstract][Full Text] [Related]  

  • 13. iCircRBP-DHN: identification of circRNA-RBP interaction sites using deep hierarchical network.
    Yang Y; Hou Z; Ma Z; Li X; Wong KC
    Brief Bioinform; 2021 Jul; 22(4):. PubMed ID: 33126261
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recognizing binding sites of poorly characterized RNA-binding proteins on circular RNAs using attention Siamese network.
    Wu H; Pan X; Yang Y; Shen HB
    Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 34297803
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A web server for identifying circRNA-RBP variable-length binding sites based on stacked generalization ensemble deep learning network.
    Wang Z; Lei X
    Methods; 2022 Sep; 205():179-190. PubMed ID: 35810958
    [TBL] [Abstract][Full Text] [Related]  

  • 16. HCRNet: high-throughput circRNA-binding event identification from CLIP-seq data using deep temporal convolutional network.
    Yang Y; Hou Z; Wang Y; Ma H; Sun P; Ma Z; Wong KC; Li X
    Brief Bioinform; 2022 Mar; 23(2):. PubMed ID: 35189638
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CRMSS: predicting circRNA-RBP binding sites based on multi-scale characterizing sequence and structure features.
    Zhang L; Lu C; Zeng M; Li Y; Wang J
    Brief Bioinform; 2023 Jan; 24(1):. PubMed ID: 36511222
    [TBL] [Abstract][Full Text] [Related]  

  • 18. RBPsuite: RNA-protein binding sites prediction suite based on deep learning.
    Pan X; Fang Y; Li X; Yang Y; Shen HB
    BMC Genomics; 2020 Dec; 21(1):884. PubMed ID: 33297946
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The interaction of circRNAs and RNA binding proteins: An important part of circRNA maintenance and function.
    Zang J; Lu D; Xu A
    J Neurosci Res; 2020 Jan; 98(1):87-97. PubMed ID: 30575990
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Circ-LocNet: A Computational Framework for Circular RNA Sub-Cellular Localization Prediction.
    Asim MN; Ibrahim MA; Imran Malik M; Dengel A; Ahmed S
    Int J Mol Sci; 2022 Jul; 23(15):. PubMed ID: 35897818
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.