These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

270 related articles for article (PubMed ID: 31703384)

  • 21. CircSSNN: circRNA-binding site prediction via sequence self-attention neural networks with pre-normalization.
    Cao C; Yang S; Li M; Li C
    BMC Bioinformatics; 2023 May; 24(1):220. PubMed ID: 37254080
    [TBL] [Abstract][Full Text] [Related]  

  • 22. CircInteractome: A web tool for exploring circular RNAs and their interacting proteins and microRNAs.
    Dudekula DB; Panda AC; Grammatikakis I; De S; Abdelmohsen K; Gorospe M
    RNA Biol; 2016; 13(1):34-42. PubMed ID: 26669964
    [TBL] [Abstract][Full Text] [Related]  

  • 23. JLCRB: A unified multi-view-based joint representation learning for CircRNA binding sites prediction.
    Du X; Xue Z
    J Biomed Inform; 2022 Dec; 136():104231. PubMed ID: 36309196
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Deep learning of the back-splicing code for circular RNA formation.
    Wang J; Wang L
    Bioinformatics; 2019 Dec; 35(24):5235-5242. PubMed ID: 31077303
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Regulation of cancer progression by circRNA and functional proteins.
    Chen J; Gu J; Tang M; Liao Z; Tang R; Zhou L; Su M; Jiang J; Hu Y; Chen Y; Zhou Y; Liao Q; Xiong W; Zhou J; Tang Y; Nie S
    J Cell Physiol; 2022 Jan; 237(1):373-388. PubMed ID: 34676546
    [TBL] [Abstract][Full Text] [Related]  

  • 26. CRBP-HFEF: Prediction of RBP-Binding Sites on circRNAs Based on Hierarchical Feature Expansion and Fusion.
    Ma Z; Sun ZL; Liu M
    Interdiscip Sci; 2023 Sep; 15(3):465-479. PubMed ID: 37233959
    [TBL] [Abstract][Full Text] [Related]  

  • 27. DeCban: Prediction of circRNA-RBP Interaction Sites by Using Double Embeddings and Cross-Branch Attention Networks.
    Yuan L; Yang Y
    Front Genet; 2020; 11():632861. PubMed ID: 33552144
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Circular RNAs: A novel target among non‑coding RNAs with potential roles in malignant tumors (Review).
    Zhao W; Dong M; Pan J; Wang Y; Zhou J; Ma J; Liu S
    Mol Med Rep; 2019 Oct; 20(4):3463-3474. PubMed ID: 31485661
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A pseudo-Siamese framework for circRNA-RBP binding sites prediction integrating BiLSTM and soft attention mechanism.
    Guo Y; Lei X
    Methods; 2022 Nov; 207():57-64. PubMed ID: 36113743
    [TBL] [Abstract][Full Text] [Related]  

  • 30. PASSION: an ensemble neural network approach for identifying the binding sites of RBPs on circRNAs.
    Jia C; Bi Y; Chen J; Leier A; Li F; Song J
    Bioinformatics; 2020 Aug; 36(15):4276-4282. PubMed ID: 32426818
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Circular RNA-protein interactions: functions, mechanisms, and identification.
    Huang A; Zheng H; Wu Z; Chen M; Huang Y
    Theranostics; 2020; 10(8):3503-3517. PubMed ID: 32206104
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Protein-Related Circular RNAs in Human Pathologies.
    Wawrzyniak O; Zarębska Ż; Kuczyński K; Gotz-Więckowska A; Rolle K
    Cells; 2020 Aug; 9(8):. PubMed ID: 32781555
    [TBL] [Abstract][Full Text] [Related]  

  • 33. MSTCRB: Predicting circRNA-RBP interaction by extracting multi-scale features based on transformer and attention mechanism.
    Zhou Y; Cui H; Liu D; Wang W
    Int J Biol Macromol; 2024 Oct; 278(Pt 2):134805. PubMed ID: 39153682
    [TBL] [Abstract][Full Text] [Related]  

  • 34. iCDA-CMG: identifying circRNA-disease associations by federating multi-similarity fusion and collective matrix completion.
    Xiao Q; Zhong J; Tang X; Luo J
    Mol Genet Genomics; 2021 Jan; 296(1):223-233. PubMed ID: 33159254
    [TBL] [Abstract][Full Text] [Related]  

  • 35. RNA-protein binding motifs mining with a new hybrid deep learning based cross-domain knowledge integration approach.
    Pan X; Shen HB
    BMC Bioinformatics; 2017 Feb; 18(1):136. PubMed ID: 28245811
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Identification of RNA binding protein interacting with circular RNA and hub candidate network for hepatocellular carcinoma.
    Cheng B; Tian J; Chen Y
    Aging (Albany NY); 2021 Jun; 13(12):16124-16143. PubMed ID: 34133325
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Prediction of Back-splicing sites for CircRNA formation based on convolutional neural networks.
    Shen Z; Shao YL; Liu W; Zhang Q; Yuan L
    BMC Genomics; 2022 Aug; 23(1):581. PubMed ID: 35962324
    [TBL] [Abstract][Full Text] [Related]  

  • 38. CircSLNN: Identifying RBP-Binding Sites on circRNAs
    Ju Y; Yuan L; Yang Y; Zhao H
    Front Genet; 2019; 10():1184. PubMed ID: 31824574
    [TBL] [Abstract][Full Text] [Related]  

  • 39. CSCD: a database for cancer-specific circular RNAs.
    Xia S; Feng J; Chen K; Ma Y; Gong J; Cai F; Jin Y; Gao Y; Xia L; Chang H; Wei L; Han L; He C
    Nucleic Acids Res; 2018 Jan; 46(D1):D925-D929. PubMed ID: 29036403
    [TBL] [Abstract][Full Text] [Related]  

  • 40. SSCRB: Predicting circRNA-RBP Interaction Sites Using a Sequence and Structural Feature-Based Attention Model.
    Liu L; Wei Y; Zhang Q; Zhao Q
    IEEE J Biomed Health Inform; 2024 Mar; 28(3):1762-1772. PubMed ID: 38224504
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.