These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

275 related articles for article (PubMed ID: 31703436)

  • 1. Recent Progress with In Situ Characterization of Interfacial Structures under a Solid-Gas Atmosphere by HP-STM and AP-XPS.
    Zhang H; Sun H; Shen K; Hu J; Hu J; Jiang Z; Song F
    Materials (Basel); 2019 Nov; 12(22):. PubMed ID: 31703436
    [No Abstract]   [Full Text] [Related]  

  • 2. Insights into electrochemical reactions from ambient pressure photoelectron spectroscopy.
    Stoerzinger KA; Hong WT; Crumlin EJ; Bluhm H; Shao-Horn Y
    Acc Chem Res; 2015 Nov; 48(11):2976-83. PubMed ID: 26305627
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Understanding Catalyst Surfaces during Catalysis through Near Ambient Pressure X-ray Photoelectron Spectroscopy.
    Nguyen L; Tao FF; Tang Y; Dou J; Bao XJ
    Chem Rev; 2019 Jun; 119(12):6822-6905. PubMed ID: 31181905
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Surface-Mediated in Situ Metalation of Porphyrins at the Solid-Vacuum Interface.
    Marbach H
    Acc Chem Res; 2015 Sep; 48(9):2649-58. PubMed ID: 26308682
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Formation of nanometer-sized surface platinum oxide clusters on a stepped Pt(557) single crystal surface induced by oxygen: a high-pressure STM and ambient-pressure XPS study.
    Zhu Z; Tao FF; Zheng F; Chang R; Li Y; Heinke L; Liu Z; Salmeron M; Somorjai GA
    Nano Lett; 2012 Mar; 12(3):1491-7. PubMed ID: 22300373
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Atomic-Scale Observations of Catalyst Structures under Reaction Conditions and during Catalysis.
    Tao FF; Crozier PA
    Chem Rev; 2016 Mar; 116(6):3487-539. PubMed ID: 26955850
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In-situ observations of catalytic surface reactions with soft x-rays under working conditions.
    Toyoshima R; Kondoh H
    J Phys Condens Matter; 2015 Mar; 27(8):083003. PubMed ID: 25667354
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bridging Electrochemistry and Ultrahigh Vacuum: "Unburying" the Electrode-Electrolyte Interface.
    Wong RA; Yokota Y; Kim Y
    Acc Chem Res; 2023 Jul; 56(14):2015-2025. PubMed ID: 37384820
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The ReactorSTM: atomically resolved scanning tunneling microscopy under high-pressure, high-temperature catalytic reaction conditions.
    Herbschleb CT; van der Tuijn PC; Roobol SB; Navarro V; Bakker JW; Liu Q; Stoltz D; Cañas-Ventura ME; Verdoes G; van Spronsen MA; Bergman M; Crama L; Taminiau I; Ofitserov A; van Baarle GJ; Frenken JW
    Rev Sci Instrum; 2014 Aug; 85(8):083703. PubMed ID: 25173272
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interactions of gaseous molecules with X-ray photons and photoelectrons in AP-XPS study of solid surface in gas phase.
    Tao FF; Nguyen L
    Phys Chem Chem Phys; 2018 Apr; 20(15):9812-9823. PubMed ID: 29589011
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In Situ Spectroscopy and Microscopy Insights into the CO Oxidation Mechanism on Au/CeO
    Piliai L; Matvija P; Dinhová TN; Khalakhan I; Skála T; Doležal Z; Bezkrovnyi O; Kepinski L; Vorokhta M; Matolínová I
    ACS Appl Mater Interfaces; 2022 Dec; 14(50):56280-56289. PubMed ID: 36484234
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultrathin TiO(x) films on Pt(111): a LEED, XPS, and STM investigation.
    Sedona F; Rizzi GA; Agnoli S; Llabrés i Xamena FX; Papageorgiou A; Ostermann D; Sambi M; Finetti P; Schierbaum K; Granozzi G
    J Phys Chem B; 2005 Dec; 109(51):24411-26. PubMed ID: 16375442
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electronic and geometric properties of Au nanoparticles on Highly Ordered Pyrolytic Graphite (HOPG) studied using X-ray Photoelectron Spectroscopy (XPS) and Scanning Tunneling Microscopy (STM).
    Lopez-Salido I; Lim DC; Dietsche R; Bertram N; Kim YD
    J Phys Chem B; 2006 Jan; 110(3):1128-36. PubMed ID: 16471654
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Catalytic reaction processes revealed by scanning probe microscopy. [corrected].
    Jiang P; Bao X; Salmeron M
    Acc Chem Res; 2015 May; 48(5):1524-31. PubMed ID: 25856470
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Surface sensitivity of four-probe STM resistivity measurements of bulk ZnO correlated to XPS.
    Lord AM; Evans JE; Barnett CJ; Allen MW; Barron AR; Wilks SP
    J Phys Condens Matter; 2017 Sep; 29(38):384001. PubMed ID: 28678024
    [TBL] [Abstract][Full Text] [Related]  

  • 16.
    Choi JIJ; Kim TS; Kim D; Lee SW; Park JY
    ACS Nano; 2020 Dec; 14(12):16392-16413. PubMed ID: 33210917
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bridging the pressure gap in model systems for heterogeneous catalysis with high-pressure scanning tunneling microscopy.
    Vang RT; Laegsgaard E; Besenbacher F
    Phys Chem Chem Phys; 2007 Jul; 9(27):3460-9. PubMed ID: 17612714
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The evolution of model catalytic systems; studies of structure, bonding and dynamics from single crystal metal surfaces to nanoparticles, and from low pressure (<10(-3) Torr) to high pressure (>10(-3) Torr) to liquid interfaces.
    Somorjai GA; York RL; Butcher D; Park JY
    Phys Chem Chem Phys; 2007 Jul; 9(27):3500-13. PubMed ID: 17612717
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of Water Vapor on Oxidation Processes of the Cu(111) Surface and Sublayer.
    Kim YJ; Kim D; Kim Y; Jeong Y; Jeong B; Park JY
    Int J Mol Sci; 2023 Jan; 24(1):. PubMed ID: 36614285
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In Situ/Operando X-ray Spectroscopies for Advanced Investigation of Energy Materials.
    Dong CL; Vayssieres L
    Chemistry; 2018 Dec; 24(69):18356-18373. PubMed ID: 30300939
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.