BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

294 related articles for article (PubMed ID: 31703452)

  • 1. In-Silico Molecular Binding Prediction for Human Drug Targets Using Deep Neural Multi-Task Learning.
    Lee K; Kim D
    Genes (Basel); 2019 Nov; 10(11):. PubMed ID: 31703452
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Machine Learning Classification Models to Improve the Docking-based Screening: A Case of PI3K-Tankyrase Inhibitors.
    Berishvili VP; Voronkov AE; Radchenko EV; Palyulin VA
    Mol Inform; 2018 Nov; 37(11):e1800030. PubMed ID: 29901257
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of Ligand-based Big Data Deep Neural Network Models for Virtual Screening of Large Compound Libraries.
    Xiao T; Qi X; Chen Y; Jiang Y
    Mol Inform; 2018 Nov; 37(11):e1800031. PubMed ID: 29882343
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Don't Overweight Weights: Evaluation of Weighting Strategies for Multi-Task Bioactivity Classification Models.
    Humbeck L; Morawietz T; Sturm N; Zalewski A; Harnqvist S; Heyndrickx W; Holmes M; Beck B
    Molecules; 2021 Nov; 26(22):. PubMed ID: 34834051
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analyzing Kinase Similarity in Small Molecule and Protein Structural Space to Explore the Limits of Multi-Target Screening.
    Schmidt D; Scharf MM; Sydow D; Aßmann E; Martí-Solano M; Keul M; Volkamer A; Kolb P
    Molecules; 2021 Jan; 26(3):. PubMed ID: 33530327
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Overview on the current status of virtual high-throughput screening and combinatorial chemistry approaches in multi-target anticancer drug discovery; Part I.
    Geromichalos GD; Alifieris CE; Geromichalou EG; Trafalis DT
    J BUON; 2016; 21(4):764-779. PubMed ID: 27685895
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Task-Specific Scoring Functions for Predicting Ligand Binding Poses and Affinity and for Screening Enrichment.
    Ashtawy HM; Mahapatra NR
    J Chem Inf Model; 2018 Jan; 58(1):119-133. PubMed ID: 29190087
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Protein Preparation Automatic Protocol for High-Throughput Inverse Virtual Screening: Accelerating the Target Identification by Computational Methods.
    De Vita S; Lauro G; Ruggiero D; Terracciano S; Riccio R; Bifulco G
    J Chem Inf Model; 2019 Nov; 59(11):4678-4690. PubMed ID: 31593460
    [TBL] [Abstract][Full Text] [Related]  

  • 9. GeneralizedDTA: combining pre-training and multi-task learning to predict drug-target binding affinity for unknown drug discovery.
    Lin S; Shi C; Chen J
    BMC Bioinformatics; 2022 Sep; 23(1):367. PubMed ID: 36071406
    [TBL] [Abstract][Full Text] [Related]  

  • 10. How Sure Can We Be about ML Methods-Based Evaluation of Compound Activity: Incorporation of Information about Prediction Uncertainty Using Deep Learning Techniques.
    Sieradzki I; Leśniak D; Podlewska S
    Molecules; 2020 Mar; 25(6):. PubMed ID: 32210186
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deep Confidence: A Computationally Efficient Framework for Calculating Reliable Prediction Errors for Deep Neural Networks.
    Cortés-Ciriano I; Bender A
    J Chem Inf Model; 2019 Mar; 59(3):1269-1281. PubMed ID: 30336009
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Machine learning on ligand-residue interaction profiles to significantly improve binding affinity prediction.
    Ji B; He X; Zhai J; Zhang Y; Man VH; Wang J
    Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33758923
    [TBL] [Abstract][Full Text] [Related]  

  • 13. TargetHunter: an in silico target identification tool for predicting therapeutic potential of small organic molecules based on chemogenomic database.
    Wang L; Ma C; Wipf P; Liu H; Su W; Xie XQ
    AAPS J; 2013 Apr; 15(2):395-406. PubMed ID: 23292636
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Application of support vector machine to three-dimensional shape-based virtual screening using comprehensive three-dimensional molecular shape overlay with known inhibitors.
    Sato T; Yuki H; Takaya D; Sasaki S; Tanaka A; Honma T
    J Chem Inf Model; 2012 Apr; 52(4):1015-26. PubMed ID: 22424085
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kinome-Wide Virtual Screening by Multi-Task Deep Learning.
    Hu J; Allen BK; Stathias V; Ayad NG; Schürer SC
    Int J Mol Sci; 2024 Feb; 25(5):. PubMed ID: 38473785
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rapid Identification of Potential Drug Candidates from Multi-Million Compounds' Repositories. Combination of 2D Similarity Search with 3D Ligand/Structure Based Methods and In Vitro Screening.
    Szilágyi K; Flachner B; Hajdú I; Szaszkó M; Dobi K; Lőrincz Z; Cseh S; Dormán G
    Molecules; 2021 Sep; 26(18):. PubMed ID: 34577064
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The current limits in virtual screening and property prediction.
    Hutter MC
    Future Med Chem; 2018 Jul; 10(13):1623-1635. PubMed ID: 29953247
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Computational-Based Method for Predicting Drug-Target Interactions by Using Stacked Autoencoder Deep Neural Network.
    Wang L; You ZH; Chen X; Xia SX; Liu F; Yan X; Zhou Y; Song KJ
    J Comput Biol; 2018 Mar; 25(3):361-373. PubMed ID: 28891684
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improving small molecule virtual screening strategies for the next generation of therapeutics.
    Wingert BM; Camacho CJ
    Curr Opin Chem Biol; 2018 Jun; 44():87-92. PubMed ID: 29920436
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improvement of multi-task learning by data enrichment: application for drug discovery.
    Sosnina EA; Sosnin S; Fedorov MV
    J Comput Aided Mol Des; 2023 Apr; 37(4):183-200. PubMed ID: 36943645
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.