BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 3170385)

  • 1. Regulation of isofunctional enzymes in Pseudomonas alcaligenes mutants defective in the gentisate pathway.
    Poh CL; Bayly RC
    J Appl Bacteriol; 1988 May; 64(5):451-8. PubMed ID: 3170385
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evidence for isofunctional enzymes used in m-cresol and 2,5-xylenol degradation via the gentisate pathway in Pseudomonas alcaligenes.
    Poh CL; Bayly RC
    J Bacteriol; 1980 Jul; 143(1):59-69. PubMed ID: 6995451
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular characterization of an inducible gentisate 1,2-dioxygenase gene, xlnE, from Pseudomonas alcaligenes NCIMB 9867.
    Yeo CC; Wong MV; Feng Y; Song KP; Poh CL
    Gene; 2003 Jul; 312():239-48. PubMed ID: 12909360
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A gene cluster encoding steps in conversion of naphthalene to gentisate in Pseudomonas sp. strain U2.
    Fuenmayor SL; Wild M; Boyes AL; Williams PA
    J Bacteriol; 1998 May; 180(9):2522-30. PubMed ID: 9573207
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Catabolism of 3-hydroxybenzoate by the gentisate pathway in Klebsiella pneumoniae M5a1.
    Jones DC; Cooper RA
    Arch Microbiol; 1990; 154(5):489-95. PubMed ID: 2256782
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Purification and characterization of gentisate 1,2-dioxygenases from Pseudomonas alcaligenes NCIB 9867 and Pseudomonas putida NCIB 9869.
    Feng Y; Khoo HE; Poh CL
    Appl Environ Microbiol; 1999 Mar; 65(3):946-50. PubMed ID: 10049846
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gentisate pathway in Salmonella typhimurium: metabolism of m-hydroxybenzoate and gentisate.
    Goetz FE; Harmuth LJ
    FEMS Microbiol Lett; 1992 Oct; 76(1-2):45-9. PubMed ID: 1427003
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gentisate 1,2-dioxygenase from pseudomonas. Purification, characterization, and comparison of the enzymes from Pseudomonas testosteroni and Pseudomonas acidovorans.
    Harpel MR; Lipscomb JD
    J Biol Chem; 1990 Apr; 265(11):6301-11. PubMed ID: 2156846
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular and biochemical characterization of the xlnD-encoded 3-hydroxybenzoate 6-hydroxylase involved in the degradation of 2,5-xylenol via the gentisate pathway in Pseudomonas alcaligenes NCIMB 9867.
    Gao X; Tan CL; Yeo CC; Poh CL
    J Bacteriol; 2005 Nov; 187(22):7696-702. PubMed ID: 16267294
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metabolic regulation and chromosomal localization of carbaryl degradation pathway in Pseudomonas sp. strains C4, C5 and C6.
    Singh R; Trivedi VD; Phale PS
    Arch Microbiol; 2013 Aug; 195(8):521-35. PubMed ID: 23728496
    [TBL] [Abstract][Full Text] [Related]  

  • 11. nag genes of Ralstonia (formerly Pseudomonas) sp. strain U2 encoding enzymes for gentisate catabolism.
    Zhou NY; Fuenmayor SL; Williams PA
    J Bacteriol; 2001 Jan; 183(2):700-8. PubMed ID: 11133965
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regulation of enzymes of the 3,5-xylenol-degradative pathway in Pseudomonas putida: evidence for a plasmid.
    Hopper DJ; Kemp PD
    J Bacteriol; 1980 Apr; 142(1):21-6. PubMed ID: 6989805
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functional characterization of a gene cluster involved in gentisate catabolism in Rhodococcus sp. strain NCIMB 12038.
    Liu TT; Xu Y; Liu H; Luo S; Yin YJ; Liu SJ; Zhou NY
    Appl Microbiol Biotechnol; 2011 Apr; 90(2):671-8. PubMed ID: 21181154
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Plasmid-borne Tn5 insertion mutation resulting in accumulation of gentisate from salicylate.
    Monticello DJ; Bakker D; Schell M; Finnerty WR
    Appl Environ Microbiol; 1985 Apr; 49(4):761-4. PubMed ID: 2988437
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pathways for the degradation of m-cresol and p-cresol by Pseudomonas putida.
    Hopper DJ; Taylor DG
    J Bacteriol; 1975 Apr; 122(1):1-6. PubMed ID: 1123316
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functional identification of novel genes involved in the glutathione-independent gentisate pathway in Corynebacterium glutamicum.
    Shen XH; Jiang CY; Huang Y; Liu ZP; Liu SJ
    Appl Environ Microbiol; 2005 Jul; 71(7):3442-52. PubMed ID: 16000747
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metabolism of 2-, 3- and 4-hydroxybenzoates by soil isolates Alcaligenes sp. strain PPH and Pseudomonas sp. strain PPD.
    Deveryshetty J; Suvekbala V; Varadamshetty G; Phale PS
    FEMS Microbiol Lett; 2007 Mar; 268(1):59-66. PubMed ID: 17169001
    [TBL] [Abstract][Full Text] [Related]  

  • 18. New aerobic benzoate oxidation pathway via benzoyl-coenzyme A and 3-hydroxybenzoyl-coenzyme A in a denitrifying Pseudomonas sp.
    Altenschmidt U; Oswald B; Steiner E; Herrmann H; Fuchs G
    J Bacteriol; 1993 Aug; 175(15):4851-8. PubMed ID: 8335640
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Proteome analysis of gentisate-induced response in Pseudomonas alcaligenes NCIB 9867.
    Zhao B; Yeo CC; Lee CC; Geng A; Chew FT; Poh CL
    Proteomics; 2004 Jul; 4(7):2028-36. PubMed ID: 15221764
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pathways of 4-hydroxybenzoate degradation among species of Bacillus.
    Crawford RL
    J Bacteriol; 1976 Jul; 127(1):204-10. PubMed ID: 931947
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.