These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 31704070)

  • 1. Co-folding of hydrophobic rice proteins and shellac in hydrophilic binary microstructures for cellular uptake of apigenin.
    Wang T; Yang Y; Feng W; Wang R; Chen Z
    Food Chem; 2020 Mar; 309():125695. PubMed ID: 31704070
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Toward water-solvation of rice proteins via backbone hybridization by casein.
    Wang T; Yue M; Xu P; Wang R; Chen Z
    Food Chem; 2018 Aug; 258():278-283. PubMed ID: 29655734
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hydrophilic co-assemblies of two hydrophobic biomolecules improving the bioavailability of silybin.
    He J; Chen Z; Gu Y; Li Y; Wang R; Gao Y; Feng W; Wang T
    Food Funct; 2020 Dec; 11(12):10828-10838. PubMed ID: 33237069
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Carboxymethylcellulose/pectin inhibiting structural folding of rice proteins via trinary structural interplays.
    Yang Y; Wang R; Feng W; Zhou X; Chen Z; Wang T
    Int J Biol Macromol; 2019 Jul; 133():93-100. PubMed ID: 30986454
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Entrapping curcumin in the hydrophobic reservoir of rice proteins toward stable antioxidant nanoparticles.
    Xu P; Qian Y; Wang R; Chen Z; Wang T
    Food Chem; 2022 Sep; 387():132906. PubMed ID: 35413554
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Alteration of the structure of rice proteins by their interaction with soy protein isolates to design novel protein composites.
    Wang T; Xu P; Chen Z; Zhou X; Wang R
    Food Funct; 2018 Aug; 9(8):4282-4291. PubMed ID: 30033456
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rice proteins and cod proteins forming shared microstructures with enhanced functional and nutritional properties.
    Wang R; Wang T; Feng W; Wang Q; Wang T
    Food Chem; 2021 Aug; 354():129520. PubMed ID: 33740645
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comb-like amphiphilic copolymers bearing acetal-functionalized backbones with the ability of acid-triggered hydrophobic-to-hydrophilic transition as effective nanocarriers for intracellular release of curcumin.
    Zhao J; Wang H; Liu J; Deng L; Liu J; Dong A; Zhang J
    Biomacromolecules; 2013 Nov; 14(11):3973-84. PubMed ID: 24107101
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fabrication of hydrophilic composites by bridging the secondary structures between rice proteins and pea proteins toward enhanced nutritional properties.
    Wang R; Li L; Feng W; Wang T
    Food Funct; 2020 Sep; 11(9):7446-7455. PubMed ID: 32808004
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Preparation, characterization and stability of curcumin-loaded zein-shellac composite colloidal particles.
    Sun C; Xu C; Mao L; Wang D; Yang J; Gao Y
    Food Chem; 2017 Aug; 228():656-667. PubMed ID: 28317777
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Unexpected Rheological Behavior of a Hydrophobic Associative Shellac-Based Oligomeric Food Thickener.
    Gao J; Li K; Xu J; Zhang W; Ma J; Liu L; Sun Y; Zhang H; Li K
    J Agric Food Chem; 2018 Jul; 66(26):6799-6805. PubMed ID: 29878772
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Solubilization by freeze-milling of water-insoluble subunits in rice proteins.
    Wang T; Liu F; Wang R; Wang L; Zhang H; Chen Z
    Food Funct; 2015 Feb; 6(2):423-30. PubMed ID: 25412155
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Physico-chemical properties of alginate/shellac aqueous-core capsules: Influence of membrane architecture on riboflavin release.
    Ben Messaoud G; Sánchez-González L; Probst L; Jeandel C; Arab-Tehrany E; Desobry S
    Carbohydr Polym; 2016 Jun; 144():428-37. PubMed ID: 27083835
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Micronization, characterization and in-vitro dissolution of shellac from PGSS supercritical CO2 technique.
    Labuschagne PW; Naicker B; Kalombo L
    Int J Pharm; 2016 Feb; 499(1-2):205-216. PubMed ID: 26707412
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of shellac-coated sustained release pellet formulations.
    Farag Y; Leopold CS
    Eur J Pharm Sci; 2011 Mar; 42(4):400-5. PubMed ID: 21251975
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adjustment of triple shellac coating for precise release of bioactive substances with different physico-chemical properties in the ileocolonic region.
    Theismann EM; Keppler JK; Knipp JR; Fangmann D; Appel E; Gorb SN; Waetzig GH; Schreiber S; Laudes M; Schwarz K
    Int J Pharm; 2019 Jun; 564():472-484. PubMed ID: 30991131
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Preparation and characterization of calcium-shellac spheres as a carrier of carbamide peroxide.
    Xue J; Zhang Z
    J Microencapsul; 2008 Dec; 25(8):523-30. PubMed ID: 18465290
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improvement in the disintegration of shellac-coated soft gelatin capsules in simulated intestinal fluid.
    Pearnchob N; Dashevsky A; Bodmeier R
    J Control Release; 2004 Feb; 94(2-3):313-21. PubMed ID: 14744483
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modulation of drug release kinetics of shellac-based matrix tablets by in-situ polymerization through annealing process.
    Limmatvapirat S; Limmatvapirat C; Puttipipatkhachorn S; Nunthanid J; Luangtana-anan M; Sriamornsak P
    Eur J Pharm Biopharm; 2008 Aug; 69(3):1004-13. PubMed ID: 18362064
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multiscale Shellac-Based Delivery Systems: From Macro- to Nanoscale.
    Yuan Y; He N; Dong L; Guo Q; Zhang X; Li B; Li L
    ACS Nano; 2021 Dec; 15(12):18794-18821. PubMed ID: 34806863
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.