BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

247 related articles for article (PubMed ID: 31704071)

  • 1. Evolution of volatile compounds during the development of Muscat grape 'Shine Muscat' (Vitis labrusca × V. vinifera).
    Wu Y; Zhang W; Song S; Xu W; Zhang C; Ma C; Wang L; Wang S
    Food Chem; 2020 Mar; 309():125778. PubMed ID: 31704071
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chemical profiles and aroma contribution of terpene compounds in Meili (Vitis vinifera L.) grape and wine.
    Yang Y; Jin GJ; Wang XJ; Kong CL; Liu J; Tao YS
    Food Chem; 2019 Jun; 284():155-161. PubMed ID: 30744840
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Diel rhythms in the volatile emission of apple and grape foliage.
    Giacomuzzi V; Cappellin L; Nones S; Khomenko I; Biasioli F; Knight AL; Angeli S
    Phytochemistry; 2017 Jun; 138():104-115. PubMed ID: 28291597
    [TBL] [Abstract][Full Text] [Related]  

  • 4. RNA-seq based transcriptomic analysis of CPPU treated grape berries and emission of volatile compounds.
    Wang W; Khalil-Ur-Rehman M; Feng J; Tao J
    J Plant Physiol; 2017 Nov; 218():155-166. PubMed ID: 28843071
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Aroma profiling of Shine Muscat grape provides detailed insights into the regulatory effect of gibberellic acid and N-(2-chloro-4-pyridinyl)-N-phenylurea applications on aroma quality.
    Wu Y; Li X; Zhang W; Wang L; Li B; Wang S
    Food Res Int; 2023 Aug; 170():112950. PubMed ID: 37316003
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Volatilome study of the feijoa fruit [Acca sellowiana (O. Berg) Burret.] with headspace solid phase microextraction and gas chromatography coupled with mass spectrometry.
    Baena-Pedroza A; Londoño-Giraldo LM; Taborda-Ocampo G
    Food Chem; 2020 Oct; 328():127109. PubMed ID: 32454261
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sensory approach and chiral analysis for determination of odour active compounds from feijoa (Acca sellowiana).
    Sinuco León DC; Rubio Ortíz DK; Jaimes González DF
    Food Chem; 2020 Jul; 317():126383. PubMed ID: 32078992
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Flavor of cold-hardy grapes: impact of berry maturity and environmental conditions.
    Pedneault K; Dorais M; Angers P
    J Agric Food Chem; 2013 Nov; 61(44):10418-38. PubMed ID: 24151907
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transcriptomics Integrated with Free and Bound Terpenoid Aroma Profiling during "Shine Muscat" (
    Wang W; Feng J; Wei L; Khalil-Ur-Rehman M; Nieuwenhuizen NJ; Yang L; Zheng H; Tao J
    J Agric Food Chem; 2021 Feb; 69(4):1413-1429. PubMed ID: 33481572
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sunlight exclusion from Muscat grape alters volatile profiles during berry development.
    Zhang H; Fan P; Liu C; Wu B; Li S; Liang Z
    Food Chem; 2014 Dec; 164():242-50. PubMed ID: 24996330
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Volatile Aroma Compounds of Brandy 'Lozovača' Produced from Muscat Table Grapevine Cultivars (
    Matijašević S; Popović-Djordjević J; Ristić R; Ćirković D; Ćirković B; Popović T
    Molecules; 2019 Jul; 24(13):. PubMed ID: 31284600
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of volatile profile from ten different varieties of Chinese jujubes by HS-SPME/GC-MS coupled with E-nose.
    Chen Q; Song J; Bi J; Meng X; Wu X
    Food Res Int; 2018 Mar; 105():605-615. PubMed ID: 29433254
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Use of density sorting for the selection of aromatic grape berries with different volatile profile.
    Pollon M; Torchio F; Giacosa S; Segade SR; Rolle L
    Food Chem; 2019 Mar; 276():562-571. PubMed ID: 30409633
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prediction of Muscat aroma in table grape by analysis of rose oxide.
    Ruiz-García L; Hellín P; Flores P; Fenoll J
    Food Chem; 2014 Jul; 154():151-7. PubMed ID: 24518327
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evolution of volatile profile and aroma potential of 'Gold Finger' table grapes during berry ripening.
    Feng MX; Jin XQ; Yao H; Zhu TY; Guo SH; Li S; Lei YL; Xing ZG; Zhao XH; Xu TF; Meng JF
    J Sci Food Agric; 2022 Jan; 102(1):291-298. PubMed ID: 34096061
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Key volatile aroma compounds of three black velvet tamarind (Dialium) fruit species.
    Lasekan O; See NS
    Food Chem; 2015 Feb; 168():561-5. PubMed ID: 25172748
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Concealed ester formation and amino acid metabolism to volatile compounds in table grape (Vitis vinifera L.) berries.
    Maoz I; Rikanati RD; Schlesinger D; Bar E; Gonda I; Levin E; Kaplunov T; Sela N; Lichter A; Lewinsohn E
    Plant Sci; 2018 Sep; 274():223-230. PubMed ID: 30080607
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of deficit irrigation and kaolin particle film on grape composition and volatile compounds in Merlot grape (Vitis vinifera L.).
    Song J; Shellie KC; Wang H; Qian MC
    Food Chem; 2012 Sep; 134(2):841-50. PubMed ID: 23107699
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Unravelling wine volatile evolution during Shiraz grape ripening by untargeted HS-SPME-GC × GC-TOFMS.
    Šuklje K; Carlin S; Stanstrup J; Antalick G; Blackman JW; Meeks C; Deloire A; Schmidtke LM; Vrhovsek U
    Food Chem; 2019 Mar; 277():753-765. PubMed ID: 30502213
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phenolic matrix effect on aroma formation of terpenes during simulated wine fermentation - Part I: Phenolic acids.
    Wang XJ; Li YK; Song HC; Tao YS; Russo N
    Food Chem; 2021 Mar; 341(Pt 2):128288. PubMed ID: 33039738
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.