These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 31704109)

  • 1. Cellulose based materials for controlled release formulations of agrochemicals: A review of modifications and applications.
    Pang L; Gao Z; Feng H; Wang S; Wang Q
    J Control Release; 2019 Dec; 316():105-115. PubMed ID: 31704109
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Controlled Release of Agrochemicals Using pH and Redox Dual-Responsive Cellulose Nanogels.
    Hou X; Pan Y; Xiao H; Liu J
    J Agric Food Chem; 2019 Jun; 67(24):6700-6707. PubMed ID: 31135150
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Predicting release and transport of pesticides from a granular formulation during unsaturated diffusion in porous media.
    Paradelo M; Soto-Gómez D; Pérez-Rodríguez P; Pose-Juan E; López-Periago JE
    J Contam Hydrol; 2014 Mar; 158():14-22. PubMed ID: 24412995
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improvement of bio-based polyurethane and its optimal application in controlled release fertilizer.
    Lu H; Dun C; Jariwala H; Wang R; Cui P; Zhang H; Dai Q; Yang S; Zhang H
    J Control Release; 2022 Oct; 350():748-760. PubMed ID: 36030990
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Controlled release systems to prevent the agro-environmental pollution derived from pesticide use.
    Fernández-Pérez M
    J Environ Sci Health B; 2007; 42(7):857-62. PubMed ID: 17763044
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Propesticides and their use as agrochemicals.
    Jeschke P
    Pest Manag Sci; 2016 Feb; 72(2):210-25. PubMed ID: 26449612
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Processing and characterization of natural cellulose fibers/thermoset polymer composites.
    Thakur VK; Thakur MK
    Carbohydr Polym; 2014 Aug; 109():102-17. PubMed ID: 24815407
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bentonite and anthracite in alginate-based controlled release formulations to reduce leaching of chloridazon and metribuzin in a calcareous soil.
    Flores Céspedes F; Pérez García S; Villafranca Sánchez M; Fernández Pérez M
    Chemosphere; 2013 Aug; 92(8):918-24. PubMed ID: 23562547
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Materials for sustained and controlled release of nutrients and molecules to support plant growth.
    Davidson D; Gu FX
    J Agric Food Chem; 2012 Feb; 60(4):870-6. PubMed ID: 22224363
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Pesticide standardization in the soil as a method of environmental quality regulation].
    Motuzinskiĭ NF; Spynu EI
    Gig Sanit; 1993 Aug; (8):18-9. PubMed ID: 8244055
    [No Abstract]   [Full Text] [Related]  

  • 11. Role of nano-range amphiphilic polymers in seed quality enhancement of soybean and imidacloprid retention capacity on seed coatings.
    Adak T; Kumar J; Shakil NA; Pandey S
    J Sci Food Agric; 2016 Oct; 96(13):4351-7. PubMed ID: 26804312
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biodegradable hydrogels of tragacanth gum polysaccharide to improve water retention capacity of soil and environment-friendly controlled release of agrochemicals.
    Saruchi ; Kumar V; Mittal H; Alhassan SM
    Int J Biol Macromol; 2019 Jul; 132():1252-1261. PubMed ID: 30954596
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Environmental protection from pollution with agricultural toxic substances in the Vinnitsa region].
    Fedorchenko VS; Marchenko GP; Martsinkovskiĭ LT; Shkurpelo VP; Piasetskiĭ VP
    Gig Sanit; 1993 Aug; (8):13-6. PubMed ID: 8244053
    [No Abstract]   [Full Text] [Related]  

  • 14. Nanocomposites for Delivering Agrochemicals: A Comprehensive Review.
    Guha T; Gopal G; Kundu R; Mukherjee A
    J Agric Food Chem; 2020 Mar; 68(12):3691-3702. PubMed ID: 32129992
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Insight into cellulose-based-nanomaterials - A pursuit of environmental remedies.
    Muqeet M; Mahar RB; Gadhi TA; Ben Halima N
    Int J Biol Macromol; 2020 Nov; 163():1480-1486. PubMed ID: 32777422
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Direct and indirect toxic effects of cotton-derived cellulose nanofibres on filamentous green algae.
    Munk M; Brandão HM; Nowak S; Mouton L; Gern JC; Guimaraes AS; Yéprémian C; Couté A; Raposo NR; Marconcini JM; Brayner R
    Ecotoxicol Environ Saf; 2015 Dec; 122():399-405. PubMed ID: 26363983
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prevention of chloridazon and metribuzin pollution using lignin-based formulations.
    Fernández-Pérez M; Villafranca-Sánchez M; Flores-Céspedes F; Pérez-García S; Daza-Fernández I
    Environ Pollut; 2010 May; 158(5):1412-9. PubMed ID: 20133032
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Production and modification of nanofibrillated cellulose using various mechanical processes: a review.
    Abdul Khalil HP; Davoudpour Y; Islam MN; Mustapha A; Sudesh K; Dungani R; Jawaid M
    Carbohydr Polym; 2014 Jan; 99():649-65. PubMed ID: 24274556
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Applications of bacterial cellulose and its composites in biomedicine.
    Rajwade JM; Paknikar KM; Kumbhar JV
    Appl Microbiol Biotechnol; 2015 Mar; 99(6):2491-511. PubMed ID: 25666681
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recent Progress in High-Strength and Robust Regenerated Cellulose Materials.
    Tu H; Zhu M; Duan B; Zhang L
    Adv Mater; 2021 Jul; 33(28):e2000682. PubMed ID: 32686231
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.