BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

449 related articles for article (PubMed ID: 31704179)

  • 21. Frontotemporal dementia-amyotrophic lateral sclerosis syndrome locus on chromosome 16p12.1-q12.2: genetic, clinical and neuropathological analysis.
    Dobson-Stone C; Luty AA; Thompson EM; Blumbergs P; Brooks WS; Short CL; Field CD; Panegyres PK; Hecker J; Solski JA; Blair IP; Fullerton JM; Halliday GM; Schofield PR; Kwok JB
    Acta Neuropathol; 2013 Apr; 125(4):523-33. PubMed ID: 23338750
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Key role of UBQLN2 in pathogenesis of amyotrophic lateral sclerosis and frontotemporal dementia.
    Renaud L; Picher-Martel V; Codron P; Julien JP
    Acta Neuropathol Commun; 2019 Jul; 7(1):103. PubMed ID: 31319884
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Lessons learned from CHMP2B, implications for frontotemporal dementia and amyotrophic lateral sclerosis.
    Ugbode C; West RJH
    Neurobiol Dis; 2021 Jan; 147():105144. PubMed ID: 33144171
    [TBL] [Abstract][Full Text] [Related]  

  • 24. UBQLN2-HSP70 axis reduces poly-Gly-Ala aggregates and alleviates behavioral defects in the C9ORF72 animal model.
    Zhang K; Wang A; Zhong K; Qi S; Wei C; Shu X; Tu WY; Xu W; Xia C; Xiao Y; Chen A; Bai L; Zhang J; Luo B; Wang W; Shen C
    Neuron; 2021 Jun; 109(12):1949-1962.e6. PubMed ID: 33991504
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Synaptic dysfunction and altered excitability in C9ORF72 ALS/FTD.
    Starr A; Sattler R
    Brain Res; 2018 Aug; 1693(Pt A):98-108. PubMed ID: 29453960
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Ageing as a risk factor for ALS/FTD.
    Niccoli T; Partridge L; Isaacs AM
    Hum Mol Genet; 2017 Oct; 26(R2):R105-R113. PubMed ID: 28977441
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Induction of autophagy mitigates TDP-43 pathology and translational repression of neurofilament mRNAs in mouse models of ALS/FTD.
    Kumar S; Phaneuf D; Cordeau P; Boutej H; Kriz J; Julien JP
    Mol Neurodegener; 2021 Jan; 16(1):1. PubMed ID: 33413517
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The converging roles of sequestosome-1/p62 in the molecular pathways of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD).
    Davidson JM; Chung RS; Lee A
    Neurobiol Dis; 2022 May; 166():105653. PubMed ID: 35143965
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Modeling key pathological features of frontotemporal dementia with C9ORF72 repeat expansion in iPSC-derived human neurons.
    Almeida S; Gascon E; Tran H; Chou HJ; Gendron TF; Degroot S; Tapper AR; Sellier C; Charlet-Berguerand N; Karydas A; Seeley WW; Boxer AL; Petrucelli L; Miller BL; Gao FB
    Acta Neuropathol; 2013 Sep; 126(3):385-99. PubMed ID: 23836290
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Generation of an induced pluripotent stem cell line (UCSCi002-A) from a patient with a variant in TARDBP gene associated with familial amyotrophic lateral sclerosis and frontotemporal dementia.
    Martello F; Lattante S; Doronzio PN; Conte A; Bisogni G; Orteschi D; Luigetti M; Marrucci MA; Zollino M; Sabatelli M; Marangi G
    Stem Cell Res; 2022 Jul; 62():102825. PubMed ID: 35667216
    [TBL] [Abstract][Full Text] [Related]  

  • 31. TDP-43 and FUS in amyotrophic lateral sclerosis and frontotemporal dementia.
    Mackenzie IR; Rademakers R; Neumann M
    Lancet Neurol; 2010 Oct; 9(10):995-1007. PubMed ID: 20864052
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Pathogenesis of FUS-associated ALS and FTD: insights from rodent models.
    Nolan M; Talbot K; Ansorge O
    Acta Neuropathol Commun; 2016 Sep; 4(1):99. PubMed ID: 27600654
    [TBL] [Abstract][Full Text] [Related]  

  • 33. ErbB4 Mutation that Decreased NRG1-ErbB4 Signaling Involved in the Pathogenesis of Amyotrophic Lateral Sclerosis/Frontotemporal Dementia.
    Sun L; Cheng B; Zhou Y; Fan Y; Li W; Qiu Q; Fang Y; Xiao S; Zheng H; Li X
    J Alzheimers Dis; 2020; 74(2):535-544. PubMed ID: 32065797
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A nonsynonymous mutation in PLCG2 reduces the risk of Alzheimer's disease, dementia with Lewy bodies and frontotemporal dementia, and increases the likelihood of longevity.
    van der Lee SJ; Conway OJ; Jansen I; Carrasquillo MM; Kleineidam L; van den Akker E; Hernández I; van Eijk KR; Stringa N; Chen JA; Zettergren A; Andlauer TFM; Diez-Fairen M; Simon-Sanchez J; Lleó A; Zetterberg H; Nygaard M; Blauwendraat C; Savage JE; Mengel-From J; Moreno-Grau S; Wagner M; Fortea J; Keogh MJ; Blennow K; Skoog I; Friese MA; Pletnikova O; Zulaica M; Lage C; de Rojas I; Riedel-Heller S; Illán-Gala I; Wei W; Jeune B; Orellana A; Then Bergh F; Wang X; Hulsman M; Beker N; Tesi N; Morris CM; Indakoetxea B; Collij LE; Scherer M; Morenas-Rodríguez E; Ironside JW; van Berckel BNM; Alcolea D; Wiendl H; Strickland SL; Pastor P; Rodríguez Rodríguez E; ; ; ; ; ; ; Boeve BF; Petersen RC; Ferman TJ; van Gerpen JA; Reinders MJT; Uitti RJ; Tárraga L; Maier W; Dols-Icardo O; Kawalia A; Dalmasso MC; Boada M; Zettl UK; van Schoor NM; Beekman M; Allen M; Masliah E; de Munain AL; Pantelyat A; Wszolek ZK; Ross OA; Dickson DW; Graff-Radford NR; Knopman D; Rademakers R; Lemstra AW; Pijnenburg YAL; Scheltens P; Gasser T; Chinnery PF; Hemmer B; Huisman MA; Troncoso J; Moreno F; Nohr EA; Sørensen TIA; Heutink P; Sánchez-Juan P; Posthuma D; ; Clarimón J; Christensen K; Ertekin-Taner N; Scholz SW; Ramirez A; Ruiz A; Slagboom E; van der Flier WM; Holstege H
    Acta Neuropathol; 2019 Aug; 138(2):237-250. PubMed ID: 31131421
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Tale of two diseases: amyotrophic lateral sclerosis and frontotemporal dementia.
    Verma A
    Neurol India; 2014; 62(4):347-51. PubMed ID: 25237937
    [TBL] [Abstract][Full Text] [Related]  

  • 36. TBK1 mutation frequencies in French frontotemporal dementia and amyotrophic lateral sclerosis cohorts.
    Le Ber I; De Septenville A; Millecamps S; Camuzat A; Caroppo P; Couratier P; Blanc F; Lacomblez L; Sellal F; Fleury MC; Meininger V; Cazeneuve C; Clot F; Flabeau O; LeGuern E; Brice A;
    Neurobiol Aging; 2015 Nov; 36(11):3116.e5-3116.e8. PubMed ID: 26476236
    [TBL] [Abstract][Full Text] [Related]  

  • 37. RNA dysfunction and aggrephagy at the centre of an amyotrophic lateral sclerosis/frontotemporal dementia disease continuum.
    Thomas M; Alegre-Abarrategui J; Wade-Martins R
    Brain; 2013 May; 136(Pt 5):1345-60. PubMed ID: 23474849
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The impact of histone post-translational modifications in neurodegenerative diseases.
    Cobos SN; Bennett SA; Torrente MP
    Biochim Biophys Acta Mol Basis Dis; 2019 Aug; 1865(8):1982-1991. PubMed ID: 30352259
    [TBL] [Abstract][Full Text] [Related]  

  • 39. C9orf72 Hexanucleotide Expansions Are Associated with Altered Endoplasmic Reticulum Calcium Homeostasis and Stress Granule Formation in Induced Pluripotent Stem Cell-Derived Neurons from Patients with Amyotrophic Lateral Sclerosis and Frontotemporal Dementia.
    Dafinca R; Scaber J; Ababneh N; Lalic T; Weir G; Christian H; Vowles J; Douglas AG; Fletcher-Jones A; Browne C; Nakanishi M; Turner MR; Wade-Martins R; Cowley SA; Talbot K
    Stem Cells; 2016 Aug; 34(8):2063-78. PubMed ID: 27097283
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Traumatic injury induces stress granule formation and enhances motor dysfunctions in ALS/FTD models.
    Anderson EN; Gochenaur L; Singh A; Grant R; Patel K; Watkins S; Wu JY; Pandey UB
    Hum Mol Genet; 2018 Apr; 27(8):1366-1381. PubMed ID: 29432563
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 23.