These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

282 related articles for article (PubMed ID: 31704183)

  • 1. Tunability of DNA Polymerase Stability during Eukaryotic DNA Replication.
    Lewis JS; Spenkelink LM; Schauer GD; Yurieva O; Mueller SH; Natarajan V; Kaur G; Maher C; Kay C; O'Donnell ME; van Oijen AM
    Mol Cell; 2020 Jan; 77(1):17-25.e5. PubMed ID: 31704183
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A conserved motif in the C-terminal tail of DNA polymerase α tethers primase to the eukaryotic replisome.
    Kilkenny ML; De Piccoli G; Perera RL; Labib K; Pellegrini L
    J Biol Chem; 2012 Jul; 287(28):23740-7. PubMed ID: 22593576
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Separable, Ctf4-mediated recruitment of DNA Polymerase α for initiation of DNA synthesis at replication origins and lagging-strand priming during replication elongation.
    Porcella SY; Koussa NC; Tang CP; Kramer DN; Srivastava P; Smith DJ
    PLoS Genet; 2020 May; 16(5):e1008755. PubMed ID: 32379761
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Eukaryotic DNA Replication Fork.
    Burgers PMJ; Kunkel TA
    Annu Rev Biochem; 2017 Jun; 86():417-438. PubMed ID: 28301743
    [TBL] [Abstract][Full Text] [Related]  

  • 5. New Insights into the Mechanism of DNA Duplication by the Eukaryotic Replisome.
    Pellegrini L; Costa A
    Trends Biochem Sci; 2016 Oct; 41(10):859-871. PubMed ID: 27555051
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quality control mechanisms exclude incorrect polymerases from the eukaryotic replication fork.
    Schauer GD; O'Donnell ME
    Proc Natl Acad Sci U S A; 2017 Jan; 114(4):675-680. PubMed ID: 28069954
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Balancing eukaryotic replication asymmetry with replication fidelity.
    Kunkel TA
    Curr Opin Chem Biol; 2011 Oct; 15(5):620-6. PubMed ID: 21862387
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genetic Networks Required to Coordinate Chromosome Replication by DNA Polymerases α, δ, and ε in Saccharomyces cerevisiae.
    Dubarry M; Lawless C; Banks AP; Cockell S; Lydall D
    G3 (Bethesda); 2015 Aug; 5(10):2187-97. PubMed ID: 26297725
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reconstitution of a eukaryotic replisome reveals suppression mechanisms that define leading/lagging strand operation.
    Georgescu RE; Schauer GD; Yao NY; Langston LD; Yurieva O; Zhang D; Finkelstein J; O'Donnell ME
    Elife; 2015 Apr; 4():e04988. PubMed ID: 25871847
    [TBL] [Abstract][Full Text] [Related]  

  • 10. How Pol α-primase is targeted to replisomes to prime eukaryotic DNA replication.
    Jones ML; Aria V; Baris Y; Yeeles JTP
    Mol Cell; 2023 Aug; 83(16):2911-2924.e16. PubMed ID: 37506699
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Limiting DNA polymerase delta alters replication dynamics and leads to a dependence on checkpoint activation and recombination-mediated DNA repair.
    Koussa NC; Smith DJ
    PLoS Genet; 2021 Jan; 17(1):e1009322. PubMed ID: 33493195
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Pol α-primase complex.
    Pellegrini L
    Subcell Biochem; 2012; 62():157-69. PubMed ID: 22918585
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Processive Activity of Replicative DNA Polymerases in the Replisome of Live Eukaryotic Cells.
    Kapadia N; El-Hajj ZW; Zheng H; Beattie TR; Yu A; Reyes-Lamothe R
    Mol Cell; 2020 Oct; 80(1):114-126.e8. PubMed ID: 32916094
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chromatin Constrains the Initiation and Elongation of DNA Replication.
    Devbhandari S; Jiang J; Kumar C; Whitehouse I; Remus D
    Mol Cell; 2017 Jan; 65(1):131-141. PubMed ID: 27989437
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Polymerase dynamics at the eukaryotic DNA replication fork.
    Burgers PM
    J Biol Chem; 2009 Feb; 284(7):4041-5. PubMed ID: 18835809
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Roles for DNA polymerase δ in initiating and terminating leading strand DNA replication.
    Zhou ZX; Lujan SA; Burkholder AB; Garbacz MA; Kunkel TA
    Nat Commun; 2019 Sep; 10(1):3992. PubMed ID: 31488849
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Initial Response of a Eukaryotic Replisome to DNA Damage.
    Taylor MRG; Yeeles JTP
    Mol Cell; 2018 Jun; 70(6):1067-1080.e12. PubMed ID: 29944888
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanism of Lagging-Strand DNA Replication in Eukaryotes.
    Stodola JL; Burgers PM
    Adv Exp Med Biol; 2017; 1042():117-133. PubMed ID: 29357056
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The DNA polymerase alpha-primase complex: multiple functions and interactions.
    Muzi-Falconi M; Giannattasio M; Foiani M; Plevani P
    ScientificWorldJournal; 2003 Mar; 3():21-33. PubMed ID: 12806117
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Coordinated leading- and lagging-strand synthesis at the Escherichia coli DNA replication fork. V. Primase action regulates the cycle of Okazaki fragment synthesis.
    Wu CA; Zechner EL; Reems JA; McHenry CS; Marians KJ
    J Biol Chem; 1992 Feb; 267(6):4074-83. PubMed ID: 1740453
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.