These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
241 related articles for article (PubMed ID: 31704293)
1. An automated framework for localization, segmentation and super-resolution reconstruction of fetal brain MRI. Ebner M; Wang G; Li W; Aertsen M; Patel PA; Aughwane R; Melbourne A; Doel T; Dymarkowski S; De Coppi P; David AL; Deprest J; Ourselin S; Vercauteren T Neuroimage; 2020 Feb; 206():116324. PubMed ID: 31704293 [TBL] [Abstract][Full Text] [Related]
2. Automated 3D reconstruction of the fetal thorax in the standard atlas space from motion-corrupted MRI stacks for 21-36 weeks GA range. Uus AU; Grigorescu I; van Poppel MPM; Steinweg JK; Roberts TA; Rutherford MA; Hajnal JV; Lloyd DFA; Pushparajah K; Deprez M Med Image Anal; 2022 Aug; 80():102484. PubMed ID: 35649314 [TBL] [Abstract][Full Text] [Related]
3. Assessment of longitudinal brain development using super-resolution magnetic resonance imaging following fetal surgery for open spina bifida. Mufti N; Chappell J; Aertsen M; Ebner M; Fidon L; Deprest J; David AL; Melbourne A; Ultrasound Obstet Gynecol; 2023 Nov; 62(5):707-720. PubMed ID: 37161647 [TBL] [Abstract][Full Text] [Related]
4. Automated template-based brain localization and extraction for fetal brain MRI reconstruction. Tourbier S; Velasco-Annis C; Taimouri V; Hagmann P; Meuli R; Warfield SK; Bach Cuadra M; Gholipour A Neuroimage; 2017 Jul; 155():460-472. PubMed ID: 28408290 [TBL] [Abstract][Full Text] [Related]
5. Automated fetal brain segmentation from 2D MRI slices for motion correction. Keraudren K; Kuklisova-Murgasova M; Kyriakopoulou V; Malamateniou C; Rutherford MA; Kainz B; Hajnal JV; Rueckert D Neuroimage; 2014 Nov; 101():633-43. PubMed ID: 25058899 [TBL] [Abstract][Full Text] [Related]
7. Fetal brain volumetry through MRI volumetric reconstruction and segmentation. Gholipour A; Estroff JA; Barnewolt CE; Connolly SA; Warfield SK Int J Comput Assist Radiol Surg; 2011 May; 6(3):329-39. PubMed ID: 20625848 [TBL] [Abstract][Full Text] [Related]
8. Application of Automatic Segmentation on Super-Resolution Reconstruction MR Images of the Abnormal Fetal Brain. Deprest T; Fidon L; De Keyzer F; Ebner M; Deprest J; Demaerel P; De Catte L; Vercauteren T; Ourselin S; Dymarkowski S; Aertsen M AJNR Am J Neuroradiol; 2023 Apr; 44(4):486-491. PubMed ID: 36863845 [TBL] [Abstract][Full Text] [Related]
9. A Deep Attentive Convolutional Neural Network for Automatic Cortical Plate Segmentation in Fetal MRI. Dou H; Karimi D; Rollins CK; Ortinau CM; Vasung L; Velasco-Annis C; Ouaalam A; Yang X; Ni D; Gholipour A IEEE Trans Med Imaging; 2021 Apr; 40(4):1123-1133. PubMed ID: 33351755 [TBL] [Abstract][Full Text] [Related]
10. PETS-Nets: Joint Pose Estimation and Tissue Segmentation of Fetal Brains Using Anatomy-Guided Networks. Pei Y; Zhao F; Zhong T; Ma L; Liao L; Wu Z; Wang L; Zhang H; Wang L; Li G IEEE Trans Med Imaging; 2024 Mar; 43(3):1006-1017. PubMed ID: 37874705 [TBL] [Abstract][Full Text] [Related]
11. PDFF-CNN: An attention-guided dynamic multi-orientation feature fusion method for gestational age prediction on imbalanced fetal brain MRI dataset. Feng Z; Zhou R; Xia W; Wang S; Liu Y; Huang Z; Gan H Med Phys; 2024 May; 51(5):3480-3494. PubMed ID: 38043088 [TBL] [Abstract][Full Text] [Related]
12. Automatic extraction of the intracranial volume in fetal and neonatal MR scans using convolutional neural networks. Khalili N; Turk E; Benders MJNL; Moeskops P; Claessens NHP; de Heus R; Franx A; Wagenaar N; Breur JMPJ; Viergever MA; Išgum I Neuroimage Clin; 2019; 24():102061. PubMed ID: 31835284 [TBL] [Abstract][Full Text] [Related]
14. Semantic segmentation of cerebrospinal fluid and brain volume with a convolutional neural network in pediatric hydrocephalus-transfer learning from existing algorithms. Grimm F; Edl F; Kerscher SR; Nieselt K; Gugel I; Schuhmann MU Acta Neurochir (Wien); 2020 Oct; 162(10):2463-2474. PubMed ID: 32583085 [TBL] [Abstract][Full Text] [Related]
15. Interactive Medical Image Segmentation Using Deep Learning With Image-Specific Fine Tuning. Wang G; Li W; Zuluaga MA; Pratt R; Patel PA; Aertsen M; Doel T; David AL; Deprest J; Ourselin S; Vercauteren T IEEE Trans Med Imaging; 2018 Jul; 37(7):1562-1573. PubMed ID: 29969407 [TBL] [Abstract][Full Text] [Related]
16. Automated 3D Fetal Brain Segmentation Using an Optimized Deep Learning Approach. Zhao L; Asis-Cruz JD; Feng X; Wu Y; Kapse K; Largent A; Quistorff J; Lopez C; Wu D; Qing K; Meyer C; Limperopoulos C AJNR Am J Neuroradiol; 2022 Mar; 43(3):448-454. PubMed ID: 35177547 [TBL] [Abstract][Full Text] [Related]
17. Correlation of fetal ventricular size and need for postnatal cerebrospinal fluid diversion surgery in open spina bifida. Agrawal S; Al-Refai A; Abbasi N; Kulkarni AV; Pruthi V; Drake J; Ryan G; Van Mieghem T Ultrasound Obstet Gynecol; 2022 Jun; 59(6):799-803. PubMed ID: 34523765 [TBL] [Abstract][Full Text] [Related]
18. Application of convolutional neural networks towards nuclei segmentation in localization-based super-resolution fluorescence microscopy images. Mela CA; Liu Y BMC Bioinformatics; 2021 Jun; 22(1):325. PubMed ID: 34130628 [TBL] [Abstract][Full Text] [Related]
19. Deep Learning-Based Multiclass Brain Tissue Segmentation in Fetal MRIs. Huang X; Liu Y; Li Y; Qi K; Gao A; Zheng B; Liang D; Long X Sensors (Basel); 2023 Jan; 23(2):. PubMed ID: 36679449 [TBL] [Abstract][Full Text] [Related]
20. Fully automatic 3D reconstruction of the placenta and its peripheral vasculature in intrauterine fetal MRI. Torrents-Barrena J; Piella G; Masoller N; Gratacós E; Eixarch E; Ceresa M; González Ballester MÁ Med Image Anal; 2019 May; 54():263-279. PubMed ID: 30954853 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]