These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
191 related articles for article (PubMed ID: 31704295)
1. Modular segregation of task-dependent brain networks contributes to the development of executive function in children. Wang C; Hu Y; Weng J; Chen F; Liu H Neuroimage; 2020 Feb; 206():116334. PubMed ID: 31704295 [TBL] [Abstract][Full Text] [Related]
2. A Longitudinal Study of Changes in Resting-State Functional Magnetic Resonance Imaging Functional Connectivity Networks During Healthy Aging. Oschmann M; Gawryluk JR Brain Connect; 2020 Sep; 10(7):377-384. PubMed ID: 32623915 [No Abstract] [Full Text] [Related]
3. Large-scale brain network connectivity underlying creativity in resting-state and task fMRI: Cooperation between default network and frontal-parietal network. Shi L; Sun J; Xia Y; Ren Z; Chen Q; Wei D; Yang W; Qiu J Biol Psychol; 2018 May; 135():102-111. PubMed ID: 29548807 [TBL] [Abstract][Full Text] [Related]
4. Evolving brain network dynamics in early childhood: Insights from modular graph metrics. Song Z; Jiang Z; Zhang Z; Wang Y; Chen Y; Tang X; Li H Neuroimage; 2024 Aug; 297():120740. PubMed ID: 39047590 [TBL] [Abstract][Full Text] [Related]
5. Development of the default-mode network during childhood and adolescence: A longitudinal resting-state fMRI study. Fan F; Liao X; Lei T; Zhao T; Xia M; Men W; Wang Y; Hu M; Liu J; Qin S; Tan S; Gao JH; Dong Q; Tao S; He Y Neuroimage; 2021 Feb; 226():117581. PubMed ID: 33221440 [TBL] [Abstract][Full Text] [Related]
6. Default mode network deactivation in pediatric temporal lobe epilepsy: Relationship to a working memory task and executive function tests. Oyegbile TO; VanMeter JW; Motamedi GK; Bell WL; Gaillard WD; Hermann BP Epilepsy Behav; 2019 May; 94():124-130. PubMed ID: 30909075 [TBL] [Abstract][Full Text] [Related]
7. The longitudinal development of large-scale functional brain networks for arithmetic ability from childhood to adolescence. Wang C; Ren T; Zhang X; Dou W; Jia X; Li BM Eur J Neurosci; 2022 Apr; 55(7):1825-1839. PubMed ID: 35304780 [TBL] [Abstract][Full Text] [Related]
8. Default mode network scaffolds immature frontoparietal network in cognitive development. Chen M; He Y; Hao L; Xu J; Tian T; Peng S; Zhao G; Lu J; Zhao Y; Zhao H; Jiang M; Gao JH; Tan S; He Y; Liu C; Tao S; Uddin LQ; Dong Q; Qin S Cereb Cortex; 2023 Apr; 33(9):5251-5263. PubMed ID: 36320154 [TBL] [Abstract][Full Text] [Related]
9. Resting state functional atlas and cerebral networks in mouse lemur primates at 11.7 Tesla. Garin CM; Nadkarni NA; Landeau B; Chételat G; Picq JL; Bougacha S; Dhenain M Neuroimage; 2021 Feb; 226():117589. PubMed ID: 33248260 [TBL] [Abstract][Full Text] [Related]
10. Evaluating functional connectivity of executive control network and frontoparietal network in Alzheimer's disease. Zhao Q; Lu H; Metmer H; Li WXY; Lu J Brain Res; 2018 Jan; 1678():262-272. PubMed ID: 29079506 [TBL] [Abstract][Full Text] [Related]
11. Frontoparietal and salience network synchronizations during nonsymbolic magnitude processing predict brain age and mathematical performance in youth. Ng CT; Huang PH; Cho YC; Lee PH; Liu YC; Chang TT Hum Brain Mapp; 2024 Aug; 45(11):e26777. PubMed ID: 39046114 [TBL] [Abstract][Full Text] [Related]
12. Resting-state connectivity and executive functions after pediatric arterial ischemic stroke. Kornfeld S; Yuan R; Biswal BB; Grunt S; Kamal S; Delgado Rodríguez JA; Regényi M; Wiest R; Weisstanner C; Kiefer C; Steinlin M; Everts R Neuroimage Clin; 2018; 17():359-367. PubMed ID: 29159048 [TBL] [Abstract][Full Text] [Related]
13. Memory Suppression Ability can be Robustly Predicted by the Internetwork Communication of Frontoparietal Control Network. Yang W; Zhuang K; Liu P; Guo Y; Chen Q; Wei D; Qiu J Cereb Cortex; 2021 Jun; 31(7):3451-3461. PubMed ID: 33662104 [TBL] [Abstract][Full Text] [Related]
14. Dynamic reorganization of the frontal parietal network during cognitive control and episodic memory. Ray KL; Ragland JD; MacDonald AW; Gold JM; Silverstein SM; Barch DM; Carter CS Cogn Affect Behav Neurosci; 2020 Feb; 20(1):76-90. PubMed ID: 31811557 [TBL] [Abstract][Full Text] [Related]
15. The developmental neural substrates of item and serial order components of verbal working memory. Attout L; Ordonez Magro L; Szmalec A; Majerus S Hum Brain Mapp; 2019 Apr; 40(5):1541-1553. PubMed ID: 30430689 [TBL] [Abstract][Full Text] [Related]
16. Topologically Reorganized Connectivity Architecture of Default-Mode, Executive-Control, and Salience Networks across Working Memory Task Loads. Liang X; Zou Q; He Y; Yang Y Cereb Cortex; 2016 Apr; 26(4):1501-1511. PubMed ID: 25596593 [TBL] [Abstract][Full Text] [Related]
17. Fronto-parietal numerical networks in relation with early numeracy in young children. Zhang H; Wee CY; Poh JS; Wang Q; Shek LP; Chong YS; Fortier MV; Meaney MJ; Broekman BFP; Qiu A Brain Struct Funct; 2019 Jan; 224(1):263-275. PubMed ID: 30315414 [TBL] [Abstract][Full Text] [Related]
18. Preparatory Engagement of Cognitive Control Networks Increases Late in Childhood. Church JA; Bunge SA; Petersen SE; Schlaggar BL Cereb Cortex; 2017 Mar; 27(3):2139-2153. PubMed ID: 26972753 [TBL] [Abstract][Full Text] [Related]
19. Brain network interactions in transgender individuals with gender incongruence. Uribe C; Junque C; Gómez-Gil E; Abos A; Mueller SC; Guillamon A Neuroimage; 2020 May; 211():116613. PubMed ID: 32057995 [TBL] [Abstract][Full Text] [Related]
20. Functional segregation of executive control network and frontoparietal network in Alzheimer's disease. Zhao Q; Sang X; Metmer H; Swati ZNNK; Lu J; Cortex; 2019 Nov; 120():36-48. PubMed ID: 31228791 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]