These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 31704313)

  • 21. A new hybrid fractal algorithm for predicting thermophilic nucleotide sequences.
    Lu JL; Hu XH; Hu DG
    J Theor Biol; 2012 Jan; 293():74-81. PubMed ID: 22001320
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Mathematical characterization of Chaos Game Representation. New algorithms for nucleotide sequence analysis.
    Dutta C; Das J
    J Mol Biol; 1992 Dec; 228(3):715-9. PubMed ID: 1469709
    [TBL] [Abstract][Full Text] [Related]  

  • 23. SpliceVec: Distributed feature representations for splice junction prediction.
    Dutta A; Dubey T; Singh KK; Anand A
    Comput Biol Chem; 2018 Jun; 74():434-441. PubMed ID: 29580738
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Chaos game representation and its applications in bioinformatics.
    Löchel HF; Heider D
    Comput Struct Biotechnol J; 2021; 19():6263-6271. PubMed ID: 34900136
    [TBL] [Abstract][Full Text] [Related]  

  • 25. CGRWDL: alignment-free phylogeny reconstruction method for viruses based on chaos game representation weighted by dynamical language model.
    Wang T; Yu ZG; Li J
    Front Microbiol; 2024; 15():1339156. PubMed ID: 38572227
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Evaluating the performance of sequence encoding schemes and machine learning methods for splice sites recognition.
    Meher PK; Sahu TK; Gahoi S; Satpathy S; Rao AR
    Gene; 2019 Jul; 705():113-126. PubMed ID: 31009682
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Fast and accurate genome comparison using genome images: The Extended Natural Vector Method.
    Pei S; Dong W; Chen X; He RL; Yau SS
    Mol Phylogenet Evol; 2019 Dec; 141():106633. PubMed ID: 31563612
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Structural characterization of chaos game fractals using small-angle scattering analysis.
    Anitas EM; Slyamov A
    PLoS One; 2017; 12(7):e0181385. PubMed ID: 28704515
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Chaos game representation of proteins.
    Basu S; Pan A; Dutta C; Das J
    J Mol Graph Model; 1997 Oct; 15(5):279-89. PubMed ID: 9640559
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Pattern matching through Chaos Game Representation: bridging numerical and discrete data structures for biological sequence analysis.
    Vinga S; Carvalho AM; Francisco AP; Russo LM; Almeida JS
    Algorithms Mol Biol; 2012 May; 7(1):10. PubMed ID: 22551152
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A novel computational method for the identification of plant alternative splice sites.
    Cui Y; Han J; Zhong D; Liu R
    Biochem Biophys Res Commun; 2013 Feb; 431(2):221-4. PubMed ID: 23313482
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Chaos game representation of protein sequences based on the detailed HP model and their multifractal and correlation analyses.
    Yu ZG; Anh V; Lau KS
    J Theor Biol; 2004 Feb; 226(3):341-8. PubMed ID: 14643648
    [TBL] [Abstract][Full Text] [Related]  

  • 33. High-accuracy splice site prediction based on sequence component and position features.
    Li JL; Wang LF; Wang HY; Bai LY; Yuan ZM
    Genet Mol Res; 2012 Sep; 11(3):3432-51. PubMed ID: 23079837
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Chaos game representation dataset of SARS-CoV-2 genome.
    Barbosa RM; Fernandes MAC
    Data Brief; 2020 Jun; 30():105618. PubMed ID: 32341946
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Efficient Boolean implementation of universal sequence maps (bUSM).
    Schwacke J; Almeida JS
    BMC Bioinformatics; 2002 Oct; 3():28. PubMed ID: 12387731
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Prediction of donor splice sites using random forest with a new sequence encoding approach.
    Meher PK; Sahu TK; Rao AR
    BioData Min; 2016; 9():4. PubMed ID: 26807151
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Predicting thermophilic proteins with pseudo amino acid composition:approached from chaos game representation and principal component analysis.
    Liu XL; Lu JL; Hu XH
    Protein Pept Lett; 2011 Dec; 18(12):1244-50. PubMed ID: 21787282
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Prediction of human mRNA donor and acceptor sites from the DNA sequence.
    Brunak S; Engelbrecht J; Knudsen S
    J Mol Biol; 1991 Jul; 220(1):49-65. PubMed ID: 2067018
    [TBL] [Abstract][Full Text] [Related]  

  • 39. DCGR: feature extractions from protein sequences based on CGR via remodeling multiple information.
    Mu Z; Yu T; Qi E; Liu J; Li G
    BMC Bioinformatics; 2019 Jun; 20(1):351. PubMed ID: 31221087
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Nucleotide, dinucleotide and trinucleotide frequencies explain patterns observed in chaos game representations of DNA sequences.
    Goldman N
    Nucleic Acids Res; 1993 May; 21(10):2487-91. PubMed ID: 8506142
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.