These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
125 related articles for article (PubMed ID: 31704327)
1. Comparative study of the effects of different chelating ligands on the absorption and transport of mercury in maize (Zea mays L.). Li Y; Guan J; Zhao J; Li B; Li YF; Gao Y Ecotoxicol Environ Saf; 2020 Jan; 188():109897. PubMed ID: 31704327 [TBL] [Abstract][Full Text] [Related]
2. Screening of chelating ligands to enhance mercury accumulation from historically mercury-contaminated soils for phytoextraction. Wang J; Xia J; Feng X J Environ Manage; 2017 Jan; 186(Pt 2):233-239. PubMed ID: 27217079 [TBL] [Abstract][Full Text] [Related]
3. Spectral insight into thiosulfate-induced mercury speciation transformation in a historically polluted soil. Liu T; Wang J; Feng X; Zhang H; Zhu Z; Cheng S Sci Total Environ; 2019 Mar; 657():938-944. PubMed ID: 30677959 [TBL] [Abstract][Full Text] [Related]
4. Enhanced uptake of As, Zn, and Cu by Vetiveria zizanioides and Zea mays using chelating agents. Chiu KK; Ye ZH; Wong MH Chemosphere; 2005 Sep; 60(10):1365-75. PubMed ID: 16054905 [TBL] [Abstract][Full Text] [Related]
5. Impact of chelator-induced phytoextraction of cadmium on yield and ionic uptake of maize. Anwar S; Khan S; Ashraf MY; Noman A; Zafar S; Liu L; Ullah S; Fahad S Int J Phytoremediation; 2017 Jun; 19(6):505-513. PubMed ID: 27819494 [TBL] [Abstract][Full Text] [Related]
6. Responses of Nonprotein Thiols to Stress of Vanadium and Mercury in Maize (Zea mays L.) Seedlings. Hou M; Li M; Yang X; Pan R Bull Environ Contam Toxicol; 2019 Mar; 102(3):425-431. PubMed ID: 30683955 [TBL] [Abstract][Full Text] [Related]
7. Evaluation of zinc accumulation, allocation, and tolerance in Zea mays L. seedlings: implication for zinc phytoextraction. Bashmakov DI; Lukatkin AS; Anjum NA; Ahmad I; Pereira E Environ Sci Pollut Res Int; 2015 Oct; 22(20):15443-8. PubMed ID: 25987477 [TBL] [Abstract][Full Text] [Related]
8. The effect of EDTA and citric acid on biochemical processes and changes in phenolic compounds profile of okra (Abelmoschus esculentus L.) under mercury stress. Mohammadi S; Pourakbar L; Siavash Moghaddam S; Popović-Djordjević J Ecotoxicol Environ Saf; 2021 Jan; 208():111607. PubMed ID: 33396127 [TBL] [Abstract][Full Text] [Related]
9. Influence of nanoscale sulfur on mercury accumulation and plant growth in oilseed rape seedlings ( Zhuang Q; Liu Q; Sun Y; Fu J; Tang S; Sharma S; Dhankher OP; Yuan H Int J Phytoremediation; 2024; 26(4):524-534. PubMed ID: 37641540 [TBL] [Abstract][Full Text] [Related]
10. Slow release chelate enhancement of lead phytoextraction by corn (Zea mays L.) from contaminated soil--a preliminary study. Li H; Wang Q; Cui Y; Dong Y; Christie P Sci Total Environ; 2005 Mar; 339(1-3):179-87. PubMed ID: 15740768 [TBL] [Abstract][Full Text] [Related]
11. [Enhanced phytoextraction of heavy metal contaminated soil by chelating agents and auxin indole-3-acetic acid]. Zhou JM; Dang Z; Chen NC; Xu SG; Xie ZY Huan Jing Ke Xue; 2007 Sep; 28(9):2085-8. PubMed ID: 17990562 [TBL] [Abstract][Full Text] [Related]
12. Growth response of Zea mays L. in pyrene-copper co-contaminated soil and the fate of pollutants. Lin Q; Shen KL; Zhao HM; Li WH J Hazard Mater; 2008 Feb; 150(3):515-21. PubMed ID: 17574741 [TBL] [Abstract][Full Text] [Related]
13. Characterization of Cd translocation and accumulation in 19 maize cultivars grown on Cd-contaminated soil: implication of maize cultivar selection for minimal risk to human health and for phytoremediation. Wang A; Wang M; Liao Q; He X Environ Sci Pollut Res Int; 2016 Mar; 23(6):5410-9. PubMed ID: 26564197 [TBL] [Abstract][Full Text] [Related]
14. The effect of Cu-resistant plant growth-promoting rhizobacteria and EDTA on phytoremediation efficiency of plants in a Cu-contaminated soil. Abbaszadeh-Dahaji P; Baniasad-Asgari A; Hamidpour M Environ Sci Pollut Res Int; 2019 Nov; 26(31):31822-31833. PubMed ID: 31487012 [TBL] [Abstract][Full Text] [Related]
15. Transfer and bioaccumulation of mercury from soil in cowpea in gold mining sites. Marrugo-Negrete J; Durango-Hernández J; Díaz-Fernández L; Urango-Cárdenas I; Araméndiz-Tatis H; Vergara-Flórez V; Bravo AG; Díez S Chemosphere; 2020 Jul; 250():126142. PubMed ID: 32105852 [TBL] [Abstract][Full Text] [Related]
16. Phytoextraction of HG by parsley (Petroselinum crispum) and its growth responses. Bibi A; Farooq U; Naz S; Khan A; Khan S; Sarwar R; Mahmood Q; Alam A; Mirza N Int J Phytoremediation; 2016; 18(4):354-7. PubMed ID: 26514060 [TBL] [Abstract][Full Text] [Related]
17. Effects of arbuscular mycorrhizal symbiosis on growth, nutrient and metal uptake by maize seedlings (Zea mays L.) grown in soils spiked with Lanthanum and Cadmium. Chang Q; Diao FW; Wang QF; Pan L; Dang ZH; Guo W Environ Pollut; 2018 Oct; 241():607-615. PubMed ID: 29886381 [TBL] [Abstract][Full Text] [Related]
18. Accumulation potential and tolerance response of Typha latifolia L. under citric acid assisted phytoextraction of lead and mercury. Amir W; Farid M; Ishaq HK; Farid S; Zubair M; Alharby HF; Bamagoos AA; Rizwan M; Raza N; Hakeem KR; Ali S Chemosphere; 2020 Oct; 257():127247. PubMed ID: 32534296 [TBL] [Abstract][Full Text] [Related]
19. EDTA and hydrochloric acid effects on mercury accumulation by Lupinus albus. Rodríguez L; Alonso-Azcárate J; Villaseñor J; Rodríguez-Castellanos L Environ Sci Pollut Res Int; 2016 Dec; 23(24):24739-24748. PubMed ID: 27658402 [TBL] [Abstract][Full Text] [Related]
20. Development of a 2D laser ablation inductively coupled plasma mass spectrometry mapping procedure for mercury in maize (Zea mays L.) root cross-sections. Debeljak M; van Elteren JT; Vogel-Mikuš K Anal Chim Acta; 2013 Jul; 787():155-62. PubMed ID: 23830434 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]