These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

378 related articles for article (PubMed ID: 31704510)

  • 1. Waste paper: An underutilized but promising source for nanocellulose mining.
    Kumar V; Pathak P; Bhardwaj NK
    Waste Manag; 2020 Feb; 102():281-303. PubMed ID: 31704510
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Revalorization of selected municipal solid wastes as new precursors of "green" nanocellulose via a novel one-pot isolation system: A source perspective.
    Chen YW; Lee HV
    Int J Biol Macromol; 2018 Feb; 107(Pt A):78-92. PubMed ID: 28860064
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Environmentally benign extraction of cellulose from dunchi fiber for nanocellulose fabrication.
    Khan MN; Rehman N; Sharif A; Ahmed E; Farooqi ZH; Din MI
    Int J Biol Macromol; 2020 Jun; 153():72-78. PubMed ID: 32135259
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Micro- and nanocelluloses from non-wood waste sources; processes and use in industrial applications.
    Gröndahl J; Karisalmi K; Vapaavuori J
    Soft Matter; 2021 Nov; 17(43):9842-9858. PubMed ID: 34713883
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pretreatment-dependent surface chemistry of wood nanocellulose for pH-sensitive hydrogels.
    Chinga-Carrasco G; Syverud K
    J Biomater Appl; 2014 Sep; 29(3):423-32. PubMed ID: 24713295
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prospects of rice straw as a raw material for paper making.
    Kaur D; Bhardwaj NK; Lohchab RK
    Waste Manag; 2017 Feb; 60():127-139. PubMed ID: 27543175
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lignocellulosic Biomass for the Synthesis of Nanocellulose and Its Eco-Friendly Advanced Applications.
    Gupta GK; Shukla P
    Front Chem; 2020; 8():601256. PubMed ID: 33425858
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Different Preparation Method of Nanocellulose from Macaranga gigantea and Its Preliminary Study on Packaging Film Potential.
    Jasmani L; Jamaluddin NAN; Rusli R; Adnan S; Zakaria S
    Polymers (Basel); 2022 Oct; 14(21):. PubMed ID: 36365585
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lignocellulosic nanofibrils produced using wheat straw and their pulping solid residue: From agricultural waste to cellulose nanomaterials.
    Bian H; Gao Y; Luo J; Jiao L; Wu W; Fang G; Dai H
    Waste Manag; 2019 May; 91():1-8. PubMed ID: 31203931
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Properties of nanocellulose isolated from corncob residue using sulfuric acid, formic acid, oxidative and mechanical methods.
    Liu C; Li B; Du H; Lv D; Zhang Y; Yu G; Mu X; Peng H
    Carbohydr Polym; 2016 Oct; 151():716-724. PubMed ID: 27474618
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A review of nanocellulose as a new material towards environmental sustainability.
    Dhali K; Ghasemlou M; Daver F; Cass P; Adhikari B
    Sci Total Environ; 2021 Jun; 775():145871. PubMed ID: 33631573
    [TBL] [Abstract][Full Text] [Related]  

  • 12. State of Art Manufacturing and Producing Nanocellulose from Agricultural Waste: A Review.
    Kaur M; Sharma P; Kumari S
    J Nanosci Nanotechnol; 2021 Jun; 21(6):3394-3403. PubMed ID: 34739796
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Predicting the most appropriate wood biomass for selected industrial applications: comparison of wood, pulping, and enzymatic treatments using fluorescent-tagged carbohydrate-binding modules.
    Bombeck PL; Khatri V; Meddeb-Mouelhi F; Montplaisir D; Richel A; Beauregard M
    Biotechnol Biofuels; 2017; 10():293. PubMed ID: 29225698
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanocellulose as a sustainable biomass material: structure, properties, present status and future prospects in biomedical applications.
    Xue Y; Mou Z; Xiao H
    Nanoscale; 2017 Oct; 9(39):14758-14781. PubMed ID: 28967940
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Isolation and characterization of nanocellulose from selected hardwoods, viz., Eucalyptus tereticornis Sm. and Casuarina equisetifolia L., by steam explosion method.
    Raju V; Revathiswaran R; Subramanian KS; Parthiban KT; Chandrakumar K; Anoop EV; Chirayil CJ
    Sci Rep; 2023 Jan; 13(1):1199. PubMed ID: 36681725
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Preparation, properties and applications of nanocellulosic materials.
    Mondal S
    Carbohydr Polym; 2017 May; 163():301-316. PubMed ID: 28267510
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comprehensive review on nanocellulose: Recent developments, challenges and future prospects.
    Thomas P; Duolikun T; Rumjit NP; Moosavi S; Lai CW; Bin Johan MR; Fen LB
    J Mech Behav Biomed Mater; 2020 Oct; 110():103884. PubMed ID: 32957191
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Potential of municipal solid waste paper as raw material for production of cellulose nanofibres.
    Hietala M; Varrio K; Berglund L; Soini J; Oksman K
    Waste Manag; 2018 Oct; 80():319-326. PubMed ID: 30455013
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Valorization of Byproducts of Hemp Multipurpose Crop: Short Non-Aligned Bast Fibers as a Source of Nanocellulose.
    Dalle Vacche S; Karunakaran V; Patrucco A; Zoccola M; Douard L; Ronchetti S; Gallo M; Schreier A; Leterrier Y; Bras J; Beneventi D; Bongiovanni R
    Molecules; 2021 Aug; 26(16):. PubMed ID: 34443315
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Wood waste valorization: Ethanol based organosolv as a promising recycling process.
    Pazzaglia A; Gelosia M; Giannoni T; Fabbrizi G; Nicolini A; Castellani B
    Waste Manag; 2023 Oct; 170():75-81. PubMed ID: 37552928
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.