These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

325 related articles for article (PubMed ID: 31705001)

  • 21. Artifacts in pulse transit time measurements using standard patient monitoring equipment.
    Bennis FC; van Pul C; van den Bogaart JJL; Andriessen P; Kramer BW; Delhaas T
    PLoS One; 2019; 14(6):e0218784. PubMed ID: 31226142
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Photoplethysmography derivatives and pulse transit time in overnight blood pressure monitoring.
    Shahrbabaki SS; Ahmed B; Penzel T; Cvetkovic D
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():2855-2858. PubMed ID: 28268912
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Novel Cuffless Blood Pressure Estimation Method Using a Bayesian Hierarchical Model.
    He S; Dajani HR; Bolic M
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():898-901. PubMed ID: 34891435
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Photoplethysmogram intensity ratio: A potential indicator for improving the accuracy of PTT-based cuffless blood pressure estimation.
    Ding XR; Zhang YT
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():398-401. PubMed ID: 26736283
    [TBL] [Abstract][Full Text] [Related]  

  • 25. BioWatch: A Noninvasive Wrist-Based Blood Pressure Monitor That Incorporates Training Techniques for Posture and Subject Variability.
    Thomas SS; Nathan V; Zong C; Soundarapandian K; Shi X; Jafari R
    IEEE J Biomed Health Inform; 2016 Sep; 20(5):1291-300. PubMed ID: 26208369
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Calibration-free blood pressure estimation based on a convolutional neural network.
    Cho J; Shin H; Choi A
    Psychophysiology; 2024 Apr; 61(4):e14480. PubMed ID: 37971153
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Systolic blood pressure estimation using PPG and ECG during physical exercise.
    Sun S; Bezemer R; Long X; Muehlsteff J; Aarts RM
    Physiol Meas; 2016 Dec; 37(12):2154-2169. PubMed ID: 27841157
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Posture-Dependent Variability in Wrist Ballistocardiogram-Photoplethysmogram Pulse Transit Time: Implication to Cuff-Less Blood Pressure Tracking.
    Shin S; Mousavi A; Lyle S; Jang E; Yousefian P; Mukkamala R; Jang DG; Kwon UK; Kim YH; Hahn JO
    IEEE Trans Biomed Eng; 2022 Jan; 69(1):347-355. PubMed ID: 34197317
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Wearable Piezoelectric-Based System for Continuous Beat-to-Beat Blood Pressure Measurement.
    Wang TW; Lin SF
    Sensors (Basel); 2020 Feb; 20(3):. PubMed ID: 32033495
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Study of continuous blood pressure estimation based on pulse transit time, heart rate and photoplethysmography-derived hemodynamic covariates.
    Feng J; Huang Z; Zhou C; Ye X
    Australas Phys Eng Sci Med; 2018 Jun; 41(2):403-413. PubMed ID: 29633173
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A Chair-Based Unobtrusive Cuffless Blood Pressure Monitoring System Based on Pulse Arrival Time.
    Tang Z; Tamura T; Sekine M; Huang M; Chen W; Yoshida M; Sakatani K; Kobayashi H; Kanaya S
    IEEE J Biomed Health Inform; 2017 Sep; 21(5):1194-1205. PubMed ID: 28113527
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Comparison of noninvasive pulse transit time estimates as markers of blood pressure using invasive pulse transit time measurements as a reference.
    Gao M; Olivier NB; Mukkamala R
    Physiol Rep; 2016 May; 4(10):. PubMed ID: 27233300
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Optimizing Estimates of Instantaneous Heart Rate from Pulse Wave Signals with the Synchrosqueezing Transform.
    Wu HT; Lewis GF; Davila MI; Daubechies I; Porges SW
    Methods Inf Med; 2016 Oct; 55(5):463-472. PubMed ID: 27626806
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Study of cuffless blood pressure estimation method based on multiple physiological parameters.
    Zhang Y; Zhou C; Huang Z; Ye X
    Physiol Meas; 2021 Jun; 42(5):. PubMed ID: 33857923
    [No Abstract]   [Full Text] [Related]  

  • 35. Exploration and validation of alternate sensing methods for wearable continuous pulse transit time measurement using optical and bioimpedance modalities.
    Ibrahim B; Nathan V; Jafari R
    Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():2051-2055. PubMed ID: 29060300
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Assessment of pre-ejection period in ambulatory subjects using seismocardiogram in a wearable blood pressure monitor.
    Guanqun Zhang ; Cottrell AC; Henry IC; McCombie DB
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():3386-3389. PubMed ID: 28269030
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Estimation of heart rate from foot worn photoplethysmography sensors during fast bike exercise.
    Jarchi D; Casson AJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():3155-2158. PubMed ID: 28268977
    [TBL] [Abstract][Full Text] [Related]  

  • 38. An Ear-Worn Vital Signs Monitor.
    He DD; Winokur ES; Sodini CG
    IEEE Trans Biomed Eng; 2015 Nov; 62(11):2547-52. PubMed ID: 26208264
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Evaluation of transit time-based models in wearable central aortic blood pressure estimation.
    Fierro G; Armentano R; Silveira F
    Biomed Phys Eng Express; 2020 Mar; 6(3):035006. PubMed ID: 33438651
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Using a new PPG indicator to increase the accuracy of PTT-based continuous cuffless blood pressure estimation.
    Wan-Hua Lin ; Hui Wang ; Samuel OW; Guanglin Li
    Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():738-741. PubMed ID: 29059978
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.