These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

290 related articles for article (PubMed ID: 31705205)

  • 1. Interstitial sodium and lithium doping effects on the electronic and mechanical properties of silicon nanowires: a DFT study.
    Salazar F; Trejo-Baños A; Miranda A; Pérez LA; Cruz-Irisson M
    J Mol Model; 2019 Nov; 25(11):338. PubMed ID: 31705205
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lithium effects on the mechanical and electronic properties of germanium nanowires.
    González-Macías A; Salazar F; Miranda A; Trejo-Baños A; Pérez LA; Carvajal E; Cruz-Irisson M
    Nanotechnology; 2018 Apr; 29(15):154004. PubMed ID: 29372891
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lithium effect on the electronic properties of porous silicon for energy storage applications: a DFT study.
    González I; Sosa AN; Trejo A; Calvino M; Miranda A; Cruz-Irisson M
    Dalton Trans; 2018 Jun; 47(22):7505-7514. PubMed ID: 29789836
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Band-gap engineering of halogenated silicon nanowires through molecular doping.
    de Santiago F; Trejo A; Miranda A; Carvajal E; Pérez LA; Cruz-Irisson M
    J Mol Model; 2017 Oct; 23(11):314. PubMed ID: 29035419
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lithium insertion in silicon nanowires: an ab initio study.
    Zhang Q; Zhang W; Wan W; Cui Y; Wang E
    Nano Lett; 2010 Sep; 10(9):3243-9. PubMed ID: 20681548
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ge nanowires on top of a Ge substrate for applications in anodes of Li and Na ion batteries: a first-principles study.
    Gao S; Zhao T; Wang D; Huang J; Xiang Y; Yu Y
    RSC Adv; 2022 Mar; 12(15):9163-9169. PubMed ID: 35424888
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A theoretical study of surface lithium effects on the [111] SiC nanowires as anode materials.
    Tang X; Yan W; Gao T; Wang J; Liu Y; Qin X
    J Mol Model; 2024 Jul; 30(8):251. PubMed ID: 38967703
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Self-stopping effects of lithium penetration into silicon nanowires.
    Lang L; Dong C; Chen G; Yang J; Gu X; Xiang H; Wu R; Gong X
    Nanoscale; 2013 Dec; 5(24):12394-8. PubMed ID: 24162503
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of lithium on the electronic properties of porous Ge as anode material for batteries.
    Sosa AN; González I; Trejo A; Miranda Á; Salazar F; Cruz-Irisson M
    J Comput Chem; 2020 Dec; 41(31):2653-2662. PubMed ID: 32936470
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In Situ Investigation of Li and Na Ion Transport with Single Nanowire Electrochemical Devices.
    Xu X; Yan M; Tian X; Yang C; Shi M; Wei Q; Xu L; Mai L
    Nano Lett; 2015 Jun; 15(6):3879-84. PubMed ID: 25989463
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Single nanowire electrode electrochemistry of silicon anode by in situ atomic force microscopy: solid electrolyte interphase growth and mechanical properties.
    Liu XR; Deng X; Liu RR; Yan HJ; Guo YG; Wang D; Wan LJ
    ACS Appl Mater Interfaces; 2014 Nov; 6(22):20317-23. PubMed ID: 25380518
    [TBL] [Abstract][Full Text] [Related]  

  • 12. First-principles study of room-temperature ferromagnetism in transition-metal doped H-SiNWs.
    Arora H; Samanta A
    Phys Chem Chem Phys; 2023 Jan; 25(4):2999-3010. PubMed ID: 36606753
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reinforcing the tetracene-based two-dimensional C
    Subramani M; Rajamani A; Subramaniam V; Hatshan MR; Gopi S; Ramasamy S
    Environ Res; 2022 Mar; 204(Pt B):112114. PubMed ID: 34571036
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metallic FeSe monolayer as an anode material for Li and non-Li ion batteries: a DFT study.
    Lv X; Li F; Gong J; Gu J; Lin S; Chen Z
    Phys Chem Chem Phys; 2020 Apr; 22(16):8902-8912. PubMed ID: 32289818
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lithium-assisted plastic deformation of silicon electrodes in lithium-ion batteries: a first-principles theoretical study.
    Zhao K; Wang WL; Gregoire J; Pharr M; Suo Z; Vlassak JJ; Kaxiras E
    Nano Lett; 2011 Jul; 11(7):2962-7. PubMed ID: 21692465
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Carbon monoxide sensing properties of B-, Al- and Ga-doped Si nanowires.
    de Santiago F; Trejo A; Miranda A; Salazar F; Carvajal E; Pérez LA; Cruz-Irisson M
    Nanotechnology; 2018 May; 29(20):204001. PubMed ID: 29480169
    [TBL] [Abstract][Full Text] [Related]  

  • 17. First-principles calculations on the deposition behavior of Li
    Shen D; Liu Y; Li M; Dong W; Yang F; Wang L; Yang S; Sun W
    Phys Chem Chem Phys; 2021 Oct; 23(38):21817-21824. PubMed ID: 34553716
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Young's Modulus, Residual Stress, and Crystal Orientation of Doubly Clamped Silicon Nanowire Beams.
    Calahorra Y; Shtempluck O; Kotchetkov V; Yaish YE
    Nano Lett; 2015 May; 15(5):2945-50. PubMed ID: 25826449
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stability, electronic structure, and optical property of surface passivated silicon nanowires: density functional calculation.
    Chen R; Wang L; Lai L; Lu J; Luo G; Zhou J; Gao Z
    J Nanosci Nanotechnol; 2009 Mar; 9(3):1754-9. PubMed ID: 19435036
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adsorption and Diffusion of Lithium and Sodium on Defective Rhenium Disulfide: A First Principles Study.
    Mukherjee S; Banwait A; Grixti S; Koratkar N; Singh CV
    ACS Appl Mater Interfaces; 2018 Feb; 10(6):5373-5384. PubMed ID: 29350901
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.