These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 3170548)

  • 1. The multicollisional, obstructed, long-range diffusional nature of mitochondrial electron transport.
    Chazotte B; Hackenbrock CR
    J Biol Chem; 1988 Oct; 263(28):14359-67. PubMed ID: 3170548
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The random collision model and a critical assessment of diffusion and collision in mitochondrial electron transport.
    Hackenbrock CR; Chazotte B; Gupte SS
    J Bioenerg Biomembr; 1986 Oct; 18(5):331-68. PubMed ID: 3021714
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lateral diffusion as a rate-limiting step in ubiquinone-mediated mitochondrial electron transport.
    Chazotte B; Hackenbrock CR
    J Biol Chem; 1989 Mar; 264(9):4978-85. PubMed ID: 2925679
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lateral diffusion of redox components in the mitochondrial inner membrane is unaffected by inner membrane folding and matrix density.
    Chazotte B; Hackenbrock CR
    J Biol Chem; 1991 Mar; 266(9):5973-9. PubMed ID: 2005133
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Relationship between lateral diffusion, collision frequency, and electron transfer of mitochondrial inner membrane oxidation-reduction components.
    Gupte S; Wu ES; Hoechli L; Hoechli M; Jacobson K; Sowers AE; Hackenbrock CR
    Proc Natl Acad Sci U S A; 1984 May; 81(9):2606-10. PubMed ID: 6326133
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The role of cytochrome c diffusion in mitochondrial electron transport.
    Gupte SS; Hackenbrock CR
    J Biol Chem; 1988 Apr; 263(11):5248-53. PubMed ID: 2833502
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lateral diffusion of ubiquinone during electron transfer in phospholipid- and ubiquinone-enriched mitochondrial membranes.
    Schneider H; Lemasters JJ; Hackenbrock CR
    J Biol Chem; 1982 Sep; 257(18):10789-93. PubMed ID: 6286674
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multidimensional diffusion modes and collision frequencies of cytochrome c with its redox partners.
    Gupte SS; Hackenbrock CR
    J Biol Chem; 1988 Apr; 263(11):5241-7. PubMed ID: 2833501
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Is ubiquinone diffusion rate-limiting for electron transfer?
    Lenaz G; Fato R
    J Bioenerg Biomembr; 1986 Oct; 18(5):369-401. PubMed ID: 3021715
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparisons of the relative effects of polyhydroxyl compounds on local versus long-range motions in the mitochondrial inner membrane. Fluorescence recovery after photobleaching, fluorescence lifetime, and fluorescence anisotropy studies.
    Chazotte B
    Biochim Biophys Acta; 1994 Sep; 1194(2):315-28. PubMed ID: 7918544
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Two-dimensional diffusion of F1F0-ATP synthase and ADP/ATP translocator. Testing a hypothesis for ATP synthesis in the mitochondrial inner membrane.
    Gupte SS; Chazotte B; Leesnitzer MA; Hackenbrock CR
    Biochim Biophys Acta; 1991 Nov; 1069(2):131-8. PubMed ID: 1718429
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The mobility of a fluorescent ubiquinone in model lipid membranes. Relevance to mitochondrial electron transport.
    Chazotte B; Wu ES; Hackenbrock CR
    Biochim Biophys Acta; 1991 Jul; 1058(3):400-9. PubMed ID: 2065063
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Relationship between the density distribution of intramembrane particles and electron transfer in the mitochondrial inner membrane as revealed by cholesterol incorporation.
    Schneider H; Höchli M; Hackenbrock CR
    J Cell Biol; 1982 Aug; 94(2):387-93. PubMed ID: 7107704
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Kinetics of integrated electron transfer in the mitochondrial respiratory chain: random collisions vs. solid state electron channeling.
    Lenaz G; Genova ML
    Am J Physiol Cell Physiol; 2007 Apr; 292(4):C1221-39. PubMed ID: 17035300
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Motional dynamics of functional cytochrome c delivered by low pH fusion into the intermembrane space of intact mitochondria.
    Cortese JD; Hackenbrock CR
    Biochim Biophys Acta; 1993 Apr; 1142(1-2):194-202. PubMed ID: 8384490
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The inhibitory effect of extracts of cigarette tar on electron transport of mitochondria and submitochondrial particles.
    Pryor WA; Arbour NC; Upham B; Church DF
    Free Radic Biol Med; 1992; 12(5):365-72. PubMed ID: 1317324
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chromium(V) is produced upon reduction of chromate by mitochondrial electron transport chain complexes.
    Rossi SC; Wetterhahn KE
    Carcinogenesis; 1989 May; 10(5):913-20. PubMed ID: 2539917
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Liposome-mitochondrial inner membrane fusion. Lateral diffusion of integral electron transfer components.
    Schneider H; Lemasters JJ; Höchli M; Hackenbrock CR
    J Biol Chem; 1980 Apr; 255(8):3748-56. PubMed ID: 6245090
    [No Abstract]   [Full Text] [Related]  

  • 19. Steady-state kinetics of the reduction of coenzyme Q analogs by complex I (NADH:ubiquinone oxidoreductase) in bovine heart mitochondria and submitochondrial particles.
    Fato R; Estornell E; Di Bernardo S; Pallotti F; Parenti Castelli G; Lenaz G
    Biochemistry; 1996 Feb; 35(8):2705-16. PubMed ID: 8611577
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mobility in the mitochondrial electron transport chain.
    Hochman J; Ferguson-Miller S; Schindler M
    Biochemistry; 1985 May; 24(10):2509-16. PubMed ID: 2990530
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.