BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 3170575)

  • 1. Deglycosylation of fibrinogen accelerates polymerization and increases lateral aggregation of fibrin fibers.
    Langer BG; Weisel JW; Dinauer PA; Nagaswami C; Bell WR
    J Biol Chem; 1988 Oct; 263(29):15056-63. PubMed ID: 3170575
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The isolation of fibrinogen monomer dramatically influences fibrin polymerization.
    Huang L; Lord ST
    Thromb Res; 2013 Jun; 131(6):e258-63. PubMed ID: 23622556
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The sequence of cleavage of fibrinopeptides from fibrinogen is important for protofibril formation and enhancement of lateral aggregation in fibrin clots.
    Weisel JW; Veklich Y; Gorkun O
    J Mol Biol; 1993 Jul; 232(1):285-97. PubMed ID: 8331664
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fibrinogen Niigata with impaired fibrin assembly: an inherited dysfibrinogen with a Bbeta Asn-160 to Ser substitution associated with extra glycosylation at Bbeta Asn-158.
    Sugo T; Nakamikawa C; Takano H; Mimuro J; Yamaguchi S; Mosesson MW; Meh DA; DiOrio JP; Takahashi N; Takahashi H; Nagai K; Matsuda M
    Blood; 1999 Dec; 94(11):3806-13. PubMed ID: 10572095
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effects of additional carbohydrate in the coiled-coil region of fibrinogen on polymerization and clot structure and properties: characterization of the homozygous and heterozygous forms of fibrinogen Lima (Aalpha Arg141-->Ser with extra glycosylation).
    Marchi R; Arocha-Piñango CL; Nagy H; Matsuda M; Weisel JW
    J Thromb Haemost; 2004 Jun; 2(6):940-8. PubMed ID: 15140130
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Decreased lateral aggregation of a variant recombinant fibrinogen provides insight into the polymerization mechanism.
    Mullin JL; Gorkun OV; Lord ST
    Biochemistry; 2000 Aug; 39(32):9843-9. PubMed ID: 10933802
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exposure of fibrinogen and thrombin to nitric oxide donor ProliNONOate affects fibrin clot properties.
    Helms CC; Kapadia S; Gilmore AC; Lu Z; Basu S; Kim-Shapiro DB
    Blood Coagul Fibrinolysis; 2017 Jul; 28(5):356-364. PubMed ID: 27755019
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Carbohydrate-binding activities of coagulation factors fibrinogen and fibrin.
    Date K; Ohyama M; Ogawa H
    Glycoconj J; 2015 Aug; 32(6):385-92. PubMed ID: 26050259
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sensing adhesion forces between erythrocytes and γ' fibrinogen, modulating fibrin clot architecture and function.
    Guedes AF; Carvalho FA; Domingues MM; Macrae FL; McPherson HR; Santos NC; Ariёns RAS
    Nanomedicine; 2018 Apr; 14(3):909-918. PubMed ID: 29410160
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Distribution of alpha-polymers and residual alpha-chains in in vitro and in vivo formed fibrin clots.
    Barthels M; Förstermann U; Sosada M; Poliwoda H
    Behring Inst Mitt; 1986 Feb; (79):24-30. PubMed ID: 3718409
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fibrinopeptide A release is necessary for effective B:b interactions in polymerisation of variant fibrinogens with impaired A:a interactions.
    Soya K; Terasawa F; Okumura N
    Thromb Haemost; 2013 Feb; 109(2):221-8. PubMed ID: 23238100
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Three-dimensional reconstruction of fibrin clot networks from stereoscopic intermediate voltage electron microscope images and analysis of branching.
    Baradet TC; Haselgrove JC; Weisel JW
    Biophys J; 1995 Apr; 68(4):1551-60. PubMed ID: 7787040
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of dimethylbiguanide on thrombin activity, FXIII activation, fibrin polymerization, and fibrin clot formation.
    Standeven KF; Ariëns RA; Whitaker P; Ashcroft AE; Weisel JW; Grant PJ
    Diabetes; 2002 Jan; 51(1):189-97. PubMed ID: 11756340
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of thrombin-catalyzed fibrin polymerization and factor XIIIa-catalyzed cross-linking of fibrin among three recombinant variant fibrinogens, gamma 275C, gamma 275H, and gamma 275A.
    Hirota-Kawadobora M; Terasawa F; Suzuki T; Tozuka M; Sano K; Okumura N
    J Thromb Haemost; 2004 Aug; 2(8):1359-67. PubMed ID: 15304042
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The ultrastructure of fibrinogen Caracas II molecules, fibers, and clots.
    Woodhead JL; Nagaswami C; Matsuda M; Arocha-Piñango CL; Weisel JW
    J Biol Chem; 1996 Mar; 271(9):4946-53. PubMed ID: 8617768
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evidence that fibrinogen γ' directly interferes with protofibril growth: implications for fibrin structure and clot stiffness.
    Allan P; Uitte de Willige S; Abou-Saleh RH; Connell SD; Ariëns RA
    J Thromb Haemost; 2012 Jun; 10(6):1072-80. PubMed ID: 22463367
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The presence of gamma' chain impairs fibrin polymerization.
    Gersh KC; Nagaswami C; Weisel JW; Lord ST
    Thromb Res; 2009 Jul; 124(3):356-63. PubMed ID: 19138790
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Clot lysis of variant recombinant fibrinogens confirms that fiber diameter is a major determinant of lysis rate.
    Mullin JL; Norfolk SE; Weisel JW; Lord ST
    Ann N Y Acad Sci; 2001; 936():331-4. PubMed ID: 11460489
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of the alpha C domains of fibrin in clot formation.
    Gorkun OV; Veklich YI; Medved LV; Henschen AH; Weisel JW
    Biochemistry; 1994 Jun; 33(22):6986-97. PubMed ID: 8204632
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computer modeling of fibrin polymerization kinetics correlated with electron microscope and turbidity observations: clot structure and assembly are kinetically controlled.
    Weisel JW; Nagaswami C
    Biophys J; 1992 Jul; 63(1):111-28. PubMed ID: 1420861
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.