These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
180 related articles for article (PubMed ID: 3170575)
1. Deglycosylation of fibrinogen accelerates polymerization and increases lateral aggregation of fibrin fibers. Langer BG; Weisel JW; Dinauer PA; Nagaswami C; Bell WR J Biol Chem; 1988 Oct; 263(29):15056-63. PubMed ID: 3170575 [TBL] [Abstract][Full Text] [Related]
2. The isolation of fibrinogen monomer dramatically influences fibrin polymerization. Huang L; Lord ST Thromb Res; 2013 Jun; 131(6):e258-63. PubMed ID: 23622556 [TBL] [Abstract][Full Text] [Related]
3. The sequence of cleavage of fibrinopeptides from fibrinogen is important for protofibril formation and enhancement of lateral aggregation in fibrin clots. Weisel JW; Veklich Y; Gorkun O J Mol Biol; 1993 Jul; 232(1):285-97. PubMed ID: 8331664 [TBL] [Abstract][Full Text] [Related]
4. Fibrinogen Niigata with impaired fibrin assembly: an inherited dysfibrinogen with a Bbeta Asn-160 to Ser substitution associated with extra glycosylation at Bbeta Asn-158. Sugo T; Nakamikawa C; Takano H; Mimuro J; Yamaguchi S; Mosesson MW; Meh DA; DiOrio JP; Takahashi N; Takahashi H; Nagai K; Matsuda M Blood; 1999 Dec; 94(11):3806-13. PubMed ID: 10572095 [TBL] [Abstract][Full Text] [Related]
5. The effects of additional carbohydrate in the coiled-coil region of fibrinogen on polymerization and clot structure and properties: characterization of the homozygous and heterozygous forms of fibrinogen Lima (Aalpha Arg141-->Ser with extra glycosylation). Marchi R; Arocha-Piñango CL; Nagy H; Matsuda M; Weisel JW J Thromb Haemost; 2004 Jun; 2(6):940-8. PubMed ID: 15140130 [TBL] [Abstract][Full Text] [Related]
6. Decreased lateral aggregation of a variant recombinant fibrinogen provides insight into the polymerization mechanism. Mullin JL; Gorkun OV; Lord ST Biochemistry; 2000 Aug; 39(32):9843-9. PubMed ID: 10933802 [TBL] [Abstract][Full Text] [Related]
7. Exposure of fibrinogen and thrombin to nitric oxide donor ProliNONOate affects fibrin clot properties. Helms CC; Kapadia S; Gilmore AC; Lu Z; Basu S; Kim-Shapiro DB Blood Coagul Fibrinolysis; 2017 Jul; 28(5):356-364. PubMed ID: 27755019 [TBL] [Abstract][Full Text] [Related]
8. Carbohydrate-binding activities of coagulation factors fibrinogen and fibrin. Date K; Ohyama M; Ogawa H Glycoconj J; 2015 Aug; 32(6):385-92. PubMed ID: 26050259 [TBL] [Abstract][Full Text] [Related]
9. Sensing adhesion forces between erythrocytes and γ' fibrinogen, modulating fibrin clot architecture and function. Guedes AF; Carvalho FA; Domingues MM; Macrae FL; McPherson HR; Santos NC; Ariёns RAS Nanomedicine; 2018 Apr; 14(3):909-918. PubMed ID: 29410160 [TBL] [Abstract][Full Text] [Related]
10. Distribution of alpha-polymers and residual alpha-chains in in vitro and in vivo formed fibrin clots. Barthels M; Förstermann U; Sosada M; Poliwoda H Behring Inst Mitt; 1986 Feb; (79):24-30. PubMed ID: 3718409 [TBL] [Abstract][Full Text] [Related]
11. Fibrinopeptide A release is necessary for effective B:b interactions in polymerisation of variant fibrinogens with impaired A:a interactions. Soya K; Terasawa F; Okumura N Thromb Haemost; 2013 Feb; 109(2):221-8. PubMed ID: 23238100 [TBL] [Abstract][Full Text] [Related]
12. Three-dimensional reconstruction of fibrin clot networks from stereoscopic intermediate voltage electron microscope images and analysis of branching. Baradet TC; Haselgrove JC; Weisel JW Biophys J; 1995 Apr; 68(4):1551-60. PubMed ID: 7787040 [TBL] [Abstract][Full Text] [Related]
13. The effect of dimethylbiguanide on thrombin activity, FXIII activation, fibrin polymerization, and fibrin clot formation. Standeven KF; Ariëns RA; Whitaker P; Ashcroft AE; Weisel JW; Grant PJ Diabetes; 2002 Jan; 51(1):189-97. PubMed ID: 11756340 [TBL] [Abstract][Full Text] [Related]
14. Comparison of thrombin-catalyzed fibrin polymerization and factor XIIIa-catalyzed cross-linking of fibrin among three recombinant variant fibrinogens, gamma 275C, gamma 275H, and gamma 275A. Hirota-Kawadobora M; Terasawa F; Suzuki T; Tozuka M; Sano K; Okumura N J Thromb Haemost; 2004 Aug; 2(8):1359-67. PubMed ID: 15304042 [TBL] [Abstract][Full Text] [Related]
15. The ultrastructure of fibrinogen Caracas II molecules, fibers, and clots. Woodhead JL; Nagaswami C; Matsuda M; Arocha-Piñango CL; Weisel JW J Biol Chem; 1996 Mar; 271(9):4946-53. PubMed ID: 8617768 [TBL] [Abstract][Full Text] [Related]
16. Evidence that fibrinogen γ' directly interferes with protofibril growth: implications for fibrin structure and clot stiffness. Allan P; Uitte de Willige S; Abou-Saleh RH; Connell SD; Ariëns RA J Thromb Haemost; 2012 Jun; 10(6):1072-80. PubMed ID: 22463367 [TBL] [Abstract][Full Text] [Related]
17. The presence of gamma' chain impairs fibrin polymerization. Gersh KC; Nagaswami C; Weisel JW; Lord ST Thromb Res; 2009 Jul; 124(3):356-63. PubMed ID: 19138790 [TBL] [Abstract][Full Text] [Related]
18. Clot lysis of variant recombinant fibrinogens confirms that fiber diameter is a major determinant of lysis rate. Mullin JL; Norfolk SE; Weisel JW; Lord ST Ann N Y Acad Sci; 2001; 936():331-4. PubMed ID: 11460489 [TBL] [Abstract][Full Text] [Related]
19. Role of the alpha C domains of fibrin in clot formation. Gorkun OV; Veklich YI; Medved LV; Henschen AH; Weisel JW Biochemistry; 1994 Jun; 33(22):6986-97. PubMed ID: 8204632 [TBL] [Abstract][Full Text] [Related]
20. Computer modeling of fibrin polymerization kinetics correlated with electron microscope and turbidity observations: clot structure and assembly are kinetically controlled. Weisel JW; Nagaswami C Biophys J; 1992 Jul; 63(1):111-28. PubMed ID: 1420861 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]