These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
383 related articles for article (PubMed ID: 31705780)
1. The power of cooperation: Experimental and computational approaches in the functional characterization of bacterial sRNAs. Georg J; Lalaouna D; Hou S; Lott SC; Caldelari I; Marzi S; Hess WR; Romby P Mol Microbiol; 2020 Mar; 113(3):603-612. PubMed ID: 31705780 [TBL] [Abstract][Full Text] [Related]
2. sRNA Target Prediction Organizing Tool (SPOT) Integrates Computational and Experimental Data To Facilitate Functional Characterization of Bacterial Small RNAs. King AM; Vanderpool CK; Degnan PH mSphere; 2019 Jan; 4(1):. PubMed ID: 30700509 [TBL] [Abstract][Full Text] [Related]
3. Genomic analysis of RNA-Seq and sRNA-Seq data identifies potential regulatory sRNAs and their functional roles in Staphylococcus aureus. Subramanian D; Bhasuran B; Natarajan J Genomics; 2019 Dec; 111(6):1431-1446. PubMed ID: 30304708 [TBL] [Abstract][Full Text] [Related]
4. Comparative genomics boosts target prediction for bacterial small RNAs. Wright PR; Richter AS; Papenfort K; Mann M; Vogel J; Hess WR; Backofen R; Georg J Proc Natl Acad Sci U S A; 2013 Sep; 110(37):E3487-96. PubMed ID: 23980183 [TBL] [Abstract][Full Text] [Related]
5. Genome-wide Annotation, Identification, and Global Transcriptomic Analysis of Regulatory or Small RNA Gene Expression in Staphylococcus aureus. Carroll RK; Weiss A; Broach WH; Wiemels RE; Mogen AB; Rice KC; Shaw LN mBio; 2016 Feb; 7(1):e01990-15. PubMed ID: 26861020 [TBL] [Abstract][Full Text] [Related]
6. The Phosphorolytic Exoribonucleases Polynucleotide Phosphorylase and RNase PH Stabilize sRNAs and Facilitate Regulation of Their mRNA Targets. Cameron TA; De Lay NR J Bacteriol; 2016 Dec; 198(24):3309-3317. PubMed ID: 27698082 [TBL] [Abstract][Full Text] [Related]
7. Reading between the Lines: Utilizing RNA-Seq Data for Global Analysis of sRNAs in Staphylococcus aureus. Sorensen HM; Keogh RA; Wittekind MA; Caillet AR; Wiemels RE; Laner EA; Carroll RK mSphere; 2020 Jul; 5(4):. PubMed ID: 32727859 [TBL] [Abstract][Full Text] [Related]
8. The RNA targetome of Staphylococcus aureus non-coding RNA RsaA: impact on cell surface properties and defense mechanisms. Tomasini A; Moreau K; Chicher J; Geissmann T; Vandenesch F; Romby P; Marzi S; Caldelari I Nucleic Acids Res; 2017 Jun; 45(11):6746-6760. PubMed ID: 28379505 [TBL] [Abstract][Full Text] [Related]
9. Dynamics of Salmonella small RNA expression in non-growing bacteria located inside eukaryotic cells. Ortega AD; Gonzalo-Asensio J; García-del Portillo F RNA Biol; 2012 Apr; 9(4):469-88. PubMed ID: 22336761 [TBL] [Abstract][Full Text] [Related]
10. The sibling sRNAs NgncR_162 and NgncR_163 of Neisseria gonorrhoeae participate in the expression control of metabolic, transport and regulatory proteins. Bauer S; Helmreich J; Zachary M; Kaethner M; Heinrichs E; Rudel T; Beier D Microbiology (Reading); 2017 Nov; 163(11):1720-1734. PubMed ID: 29058643 [TBL] [Abstract][Full Text] [Related]
11. A Modular Genetic System for High-Throughput Profiling and Engineering of Multi-Target Small RNAs. Stimple SD; Lahiry A; Taris JE; Wood DW; Lease RA Methods Mol Biol; 2018; 1737():373-391. PubMed ID: 29484604 [TBL] [Abstract][Full Text] [Related]
12. Identification of streptococcal small RNAs that are putative targets of RNase III through bioinformatics analysis of RNA sequencing data. Rath EC; Pitman S; Cho KH; Bai Y BMC Bioinformatics; 2017 Dec; 18(Suppl 14):540. PubMed ID: 29297355 [TBL] [Abstract][Full Text] [Related]
13. Competing endogenous RNAs: a target-centric view of small RNA regulation in bacteria. Bossi L; Figueroa-Bossi N Nat Rev Microbiol; 2016 Dec; 14(12):775-784. PubMed ID: 27640758 [TBL] [Abstract][Full Text] [Related]
14. Kinetic modeling reveals additional regulation at co-transcriptional level by post-transcriptional sRNA regulators. Reyer MA; Chennakesavalu S; Heideman EM; Ma X; Bujnowska M; Hong L; Dinner AR; Vanderpool CK; Fei J Cell Rep; 2021 Sep; 36(13):109764. PubMed ID: 34592145 [TBL] [Abstract][Full Text] [Related]
15. Identification of tandem duplicate regulatory small RNAs in Pseudomonas aeruginosa involved in iron homeostasis. Wilderman PJ; Sowa NA; FitzGerald DJ; FitzGerald PC; Gottesman S; Ochsner UA; Vasil ML Proc Natl Acad Sci U S A; 2004 Jun; 101(26):9792-7. PubMed ID: 15210934 [TBL] [Abstract][Full Text] [Related]
16. sRNARFTarget: a fast machine-learning-based approach for transcriptome-wide sRNA target prediction. Naskulwar K; Peña-Castillo L RNA Biol; 2022; 19(1):44-54. PubMed ID: 34965197 [TBL] [Abstract][Full Text] [Related]
17. Toward a Comprehensive Analysis of Posttranscriptional Regulatory Networks: a New Tool for the Identification of Small RNA Regulators of Specific mRNAs. Han K; Lory S mBio; 2021 Feb; 12(1):. PubMed ID: 33622723 [TBL] [Abstract][Full Text] [Related]
18. Experimental approaches to identify small RNAs and their diverse roles in bacteria--what we have learnt in one decade of MicA research. Van Puyvelde S; Vanderleyden J; De Keersmaecker SC Microbiologyopen; 2015 Oct; 4(5):699-711. PubMed ID: 25974745 [TBL] [Abstract][Full Text] [Related]
19. Integration of Bacterial Small RNAs in Regulatory Networks. Nitzan M; Rehani R; Margalit H Annu Rev Biophys; 2017 May; 46():131-148. PubMed ID: 28532217 [TBL] [Abstract][Full Text] [Related]
20. sRNA-controlled iron sparing response in Staphylococci. Coronel-Tellez RH; Pospiech M; Barrault M; Liu W; Bordeau V; Vasnier C; Felden B; Sargueil B; Bouloc P Nucleic Acids Res; 2022 Aug; 50(15):8529-8546. PubMed ID: 35904807 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]