These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 3170582)

  • 21. Tyrosyl-tRNA synthetase from Escherichia coli. Stoichiometry of ligand binding and half-of-the-sites reactivity in aminoacylation.
    Jakes R; Fersht AR
    Biochemistry; 1975 Jul; 14(15):3344-50. PubMed ID: 1096941
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Activation of D-tyrosine by Bacillus stearothermophilus tyrosyl-tRNA synthetase: 1. Pre-steady-state kinetic analysis reveals the mechanistic basis for the recognition of D-tyrosine.
    Sheoran A; Sharma G; First EA
    J Biol Chem; 2008 May; 283(19):12960-70. PubMed ID: 18319247
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Chloride affects the interaction between tyrosyl-tRNA synthetase and tRNA.
    Airas RK
    Biochim Biophys Acta; 1999 Oct; 1472(1-2):51-61. PubMed ID: 10572925
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Differences in the magnesium dependences of the class I and class II aminoacyl-tRNA synthetases from Escherichia coli.
    Airas RK
    Eur J Biochem; 1996 Aug; 240(1):223-31. PubMed ID: 8797857
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The binding of tyrosinyl-5'-AMP to tyrosyl-tRNA synthetase (E.coli).
    Grosse F; Krauss G; Kownatzki R; Maass G
    Nucleic Acids Res; 1979 Apr; 6(4):1631-8. PubMed ID: 377229
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Thermodynamic analysis reveals a temperature-dependent change in the catalytic mechanism of bacillus stearothermophilus tyrosyl-tRNA synthetase.
    Sharma G; First EA
    J Biol Chem; 2009 Feb; 284(7):4179-90. PubMed ID: 19098308
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Demonstration of two reaction pathways for the aminoacylation of tRNA. Application of the pulsed quenched flow technique.
    Fersht AR; Jakes R
    Biochemistry; 1975 Jul; 14(15):3350-6. PubMed ID: 1096942
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Modification of aminoacyl-tRNA synthetases with pyridoxal-5'-phosphate. Identification of the labeled amino acid residues.
    Kalogerakos T; Hountondji C; Berne PF; Dukta S; Blanquet S
    Biochimie; 1994; 76(1):33-44. PubMed ID: 8031903
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Pyrophosphate amplification reaction for measuring amino acid concentrations with high sensitivity using aminoacyl-tRNA synthetase from
    Nakatsuka T; Aoki H; Kida M; Kugimiya A
    Biosci Biotechnol Biochem; 2019 Sep; 83(9):1616-1623. PubMed ID: 31032741
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [Interaction of eukaryotic tyrosyl-tRNA-synthetase with high molecular weight RNA].
    Kurochkin IV; Korneliuk AI; Matsuka GKh
    Mol Biol (Mosk); 1991; 25(3):779-86. PubMed ID: 1944260
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Comparison of the complexed and free forms of rat liver arginyl-tRNA synthetase and origin of the free form.
    Vellekamp G; Sihag RK; Deutscher MP
    J Biol Chem; 1985 Aug; 260(17):9843-7. PubMed ID: 4019497
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Tyroslyl-tRNA synthetase from baker's yeast. Rapid isolation by affinity elution, molecular weight of the enzyme, and determination of essential sulfhydryl groups.
    Faulhammer HG; Cramer F
    Eur J Biochem; 1977 May; 75(2):561-70. PubMed ID: 328277
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Comparison of the catalytic roles played by the KMSKS motif in the human and Bacillus stearothermophilus trosyl-tRNA synthetases.
    Austin J; First EA
    J Biol Chem; 2002 Aug; 277(32):28394-9. PubMed ID: 12016229
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Correlating amino acid conservation with function in tyrosyl-tRNA synthetase.
    Xin Y; Li W; Dwyer DS; First EA
    J Mol Biol; 2000 Oct; 303(2):287-98. PubMed ID: 11023793
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Structural snapshots of the KMSKS loop rearrangement for amino acid activation by bacterial tyrosyl-tRNA synthetase.
    Kobayashi T; Takimura T; Sekine R; Kelly VP; Kamata K; Sakamoto K; Nishimura S; Yokoyama S
    J Mol Biol; 2005 Feb; 346(1):105-17. PubMed ID: 15663931
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Distinct steps in the specific binding of tRNA to aminoacyl-tRNA synthetase. Temperature-jump studies on the serine-specific system from yeast and the tyrosine-specific system from Escherichia coli.
    Riesner D; Pingoud A; Boehme D; Peters F; Maass G
    Eur J Biochem; 1976 Sep; 68(1):71-80. PubMed ID: 9287
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Changing the amino acid specificity of yeast tyrosyl-tRNA synthetase by genetic engineering.
    Ohno S; Yokogawa T; Nishikawa K
    J Biochem; 2001 Sep; 130(3):417-23. PubMed ID: 11530018
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Mechanism of aminoacylation of tRNA. Proof of the aminoacyl adenylate pathway for the isoleucyl- and tyrosyl-tRNA synthetases from Escherichia coli K12.
    Fersht AR; Kaethner MM
    Biochemistry; 1976 Feb; 15(4):818-23. PubMed ID: 764868
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Neutron scattering studies of escherichia coli tyrosyl-trna synthetase and of its interaction with trna tyr.
    Dessen P; Zaccaï G; Blanquet S
    J Mol Biol; 1982 Aug; 159(4):651-64. PubMed ID: 6754952
    [No Abstract]   [Full Text] [Related]  

  • 40. Interaction of crystalline tyrosyl-tRNA synthetase with adenosine, adenosine monophosphate, adenosine triphosphate and pyrophosphate in the presence of tyrosinol.
    Monteilhet C; Blow DM; Brick P
    J Mol Biol; 1984 Mar; 173(4):477-85. PubMed ID: 6323720
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.