These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 31706122)

  • 1. Hydroxyl radical scavenging by solid mineral surfaces in oxidative treatment systems: Rate constants and implications.
    Rusevova Crincoli K; Huling SG
    Water Res; 2020 Feb; 169():115240. PubMed ID: 31706122
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sulfate Radical Scavenging by Mineral Surfaces in Persulfate-Driven Oxidation Systems: Reaction Rate Constants and Implications.
    Crincoli KR; Green C; Huling SG
    Environ Sci Technol; 2020 Feb; 54(3):1955-1962. PubMed ID: 31967801
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Contrasting hydrogen peroxide- and persulfate-driven oxidation systems: Impact of radical scavenging on treatment efficiency and cost.
    Crincoli KR; Huling SG
    Chem Eng J; 2021 Jan; 404():. PubMed ID: 34121918
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comment to the article "Hydroxyl radical scavenging by solid mineral surfaces in oxidative treatment systems: Rate constants and implications" published by K. Rusevova Crincoli and S. G. Huling in Water Research 169, 2020, 115240.
    Kopinke FD
    Water Res; 2020 Nov; 186():116308. PubMed ID: 32877807
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reply to comment on, hydroxyl radical scavenging by solid mineral surfaces in oxidative treatment systems: Rate constants and implications. water research 169, 9. 10.1016/j.watres.2019.115240.
    Rusevova-Crincoli K; Huling SG
    Water Res; 2020 Nov; 186():116399. PubMed ID: 32927422
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hydroxyl and sulfate radical-based oxidation of RhB dye in UV/H
    Ding X; Gutierrez L; Croue JP; Li M; Wang L; Wang Y
    Chemosphere; 2020 Aug; 253():126655. PubMed ID: 32302899
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hydroxyl radical scavenging factor measurement using a fluorescence excitation-emission matrix and parallel factor analysis in ultraviolet advanced oxidation processes.
    Hwang TM; Nam SH; Lee J; Koo JW; Kim E; Kwon M
    Chemosphere; 2020 Nov; 259():127396. PubMed ID: 32645596
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kinetic models for hydroxyl radical production and contaminant removal during soil/sediment oxygenation.
    Zhang P; Liu J; Yu H; Cheng D; Liu H; Yuan S
    Water Res; 2023 Jul; 240():120071. PubMed ID: 37210971
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Impact of groundwater quality and associated byproduct formation during UV/hydrogen peroxide treatment of 1,4-dioxane.
    Lee CS; Venkatesan AK; Walker HW; Gobler CJ
    Water Res; 2020 Apr; 173():115534. PubMed ID: 32023496
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fe-Impregnated Mineral Colloids for Peroxide Activation: Effects of Mineral Substrate and Fe Precursor.
    Li Y; Machala L; Yan W
    Environ Sci Technol; 2016 Feb; 50(3):1190-9. PubMed ID: 26713453
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hydroxyl radical and non-hydroxyl radical pathways for trichloroethylene and perchloroethylene degradation in catalyzed H
    Watts RJ; Teel AL
    Water Res; 2019 Aug; 159():46-54. PubMed ID: 31078751
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Degradation of mineral-immobilized pyrene by ferrate oxidation: Role of mineral type and intermediate oxidative iron species.
    Wang Z; Wang F; Xiang L; Bian Y; Zhao Z; Gao Z; Cheng J; Schaeffer A; Jiang X; Dionysiou DD
    Water Res; 2022 Jun; 217():118377. PubMed ID: 35397372
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rates of hydroxyl radical generation and organic compound oxidation in mineral-catalyzed Fenton-like systems.
    Kwan WP; Voelker BM
    Environ Sci Technol; 2003 Mar; 37(6):1150-8. PubMed ID: 12680668
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of halide impacts on the efficiency of contaminant degradation by sulfate and hydroxyl radical-based advanced oxidation processes (AOPs).
    Yang Y; Pignatello JJ; Ma J; Mitch WA
    Environ Sci Technol; 2014 Feb; 48(4):2344-51. PubMed ID: 24479380
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Oxidative degradation of commingled trichloroethylene and 1,4-dioxane by hydroxyl radicals produced upon oxygenation of a reduced clay mineral.
    Zhou Z; Zeng Q; Li G; Hu D; Xia Q; Dong H
    Chemosphere; 2022 Mar; 290():133265. PubMed ID: 34914951
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hydroxyl radical scavenging assay of phenolics and flavonoids with a modified cupric reducing antioxidant capacity (CUPRAC) method using catalase for hydrogen peroxide degradation.
    Ozyürek M; Bektaşoğlu B; Güçlü K; Apak R
    Anal Chim Acta; 2008 Jun; 616(2):196-206. PubMed ID: 18482604
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Activation of Peroxymonosulfate by Subsurface Minerals.
    Yu M; Teel AL; Watts RJ
    J Contam Hydrol; 2016 Aug; 191():33-43. PubMed ID: 27209171
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of peat on Fenton oxidation.
    Huling SG; Arnold RG; Sierka RA; Miller MR
    Water Res; 2001 May; 35(7):1687-94. PubMed ID: 11329670
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of mineral and soluble iron Fenton's catalysts for the treatment of trichloroethylene.
    Teel AL; Warberg CR; Atkinson DA; Watts RJ
    Water Res; 2001 Mar; 35(4):977-84. PubMed ID: 11235893
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inhibitory effect of dissolved silica on H₂O₂ decomposition by iron(III) and manganese(IV) oxides: implications for H₂O₂-based in situ chemical oxidation.
    Pham AL; Doyle FM; Sedlak DL
    Environ Sci Technol; 2012 Jan; 46(2):1055-62. PubMed ID: 22129132
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.