These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
314 related articles for article (PubMed ID: 31706242)
1. Interfacial oxygen nanobubbles reduce methylmercury production ability of sediments in eutrophic waters. Ji X; Liu C; Pan G Ecotoxicol Environ Saf; 2020 Jan; 188():109888. PubMed ID: 31706242 [TBL] [Abstract][Full Text] [Related]
2. Mitigation of methylmercury production in eutrophic waters by interfacial oxygen nanobubbles. Ji X; Liu C; Zhang M; Yin Y; Pan G Water Res; 2020 Apr; 173():115563. PubMed ID: 32059129 [TBL] [Abstract][Full Text] [Related]
3. Horizontal and vertical variability of mercury species in pore water and sediments in small lakes in Ontario. He T; Lu J; Yang F; Feng X Sci Total Environ; 2007 Nov; 386(1-3):53-64. PubMed ID: 17720225 [TBL] [Abstract][Full Text] [Related]
4. Relationship of sediment redox conditions to methyl mercury in surface sediment of Louisiana Lakes. DeLaune RD; Jugsujinda A; Devai I; Patrick WH J Environ Sci Health A Tox Hazard Subst Environ Eng; 2004; 39(8):1925-33. PubMed ID: 15332659 [TBL] [Abstract][Full Text] [Related]
5. Mechanisms of algal biomass input enhanced microbial Hg methylation in lake sediments. Lei P; Nunes LM; Liu YR; Zhong H; Pan K Environ Int; 2019 May; 126():279-288. PubMed ID: 30825746 [TBL] [Abstract][Full Text] [Related]
6. Comparison of mercury speciation and distribution in the water column and sediments between the algal type zone and the macrophytic type zone in a hypereutrophic lake (Dianchi Lake) in Southwestern China. Wang S; Zhang M; Li B; Xing D; Wang X; Wei C; Jia Y Sci Total Environ; 2012 Feb; 417-418():204-13. PubMed ID: 22265601 [TBL] [Abstract][Full Text] [Related]
7. MeHg production in eutrophic lakes: Focusing on the roles of algal organic matter and iron-sulfur-phosphorus dynamics. Wang T; Yang X; Li Z; Chen W; Wen X; He Y; Ma C; Yang Z; Zhang C J Hazard Mater; 2023 Sep; 457():131682. PubMed ID: 37270963 [TBL] [Abstract][Full Text] [Related]
8. Whole-lake nitrate addition for control of methylmercury in mercury-contaminated Onondaga Lake, NY. Matthews DA; Babcock DB; Nolan JG; Prestigiacomo AR; Effler SW; Driscoll CT; Todorova SG; Kuhr KM Environ Res; 2013 Aug; 125():52-60. PubMed ID: 23683521 [TBL] [Abstract][Full Text] [Related]
9. Algal-derived dissolved organic matter accelerates mercury methylation under cyanobacterial blooms in the sediment of eutrophic lakes. Wang Y; Zhang L; Chen X; Li C; Ding S; Yan J; Xiao J; Wang B; Xu L; Hang X Environ Res; 2024 Jun; 251(Pt 2):118734. PubMed ID: 38493854 [TBL] [Abstract][Full Text] [Related]
10. Algal Organic Matter Drives Methanogen-Mediated Methylmercury Production in Water from Eutrophic Shallow Lakes. Lei P; Zhang J; Zhu J; Tan Q; Kwong RWM; Pan K; Jiang T; Naderi M; Zhong H Environ Sci Technol; 2021 Aug; 55(15):10811-10820. PubMed ID: 34236181 [TBL] [Abstract][Full Text] [Related]
11. Evaluation of biochars and activated carbons for in situ remediation of sediments impacted with organics, mercury, and methylmercury. Gomez-Eyles JL; Yupanqui C; Beckingham B; Riedel G; Gilmour C; Ghosh U Environ Sci Technol; 2013 Dec; 47(23):13721-9. PubMed ID: 24168448 [TBL] [Abstract][Full Text] [Related]
12. Activated carbon mitigates mercury and methylmercury bioavailability in contaminated sediments. Gilmour CC; Riedel GS; Riedel G; Kwon S; Landis R; Brown SS; Menzie CA; Ghosh U Environ Sci Technol; 2013 Nov; 47(22):13001-10. PubMed ID: 24156748 [TBL] [Abstract][Full Text] [Related]
13. Influences of iron, manganese, and dissolved organic carbon on the hypolimnetic cycling of amended mercury. Chadwick SP; Babiarz CL; Hurley JP; Armstrong DE Sci Total Environ; 2006 Sep; 368(1):177-88. PubMed ID: 16225911 [TBL] [Abstract][Full Text] [Related]
14. The impacts of organic matter on the distribution and methylation of mercury in a hydroelectric reservoir in Wujiang River, Southwest China. Meng B; Feng X; Qiu G; Li Z; Yao H; Shang L; Yan H Environ Toxicol Chem; 2016 Jan; 35(1):191-9. PubMed ID: 26212025 [TBL] [Abstract][Full Text] [Related]
15. Mercury cycling in stream ecosystems. 2. Benthic methylmercury production and bed sediment-pore water partitioning. Marvin-Dipasquale M; Lutz MA; Brigham ME; Krabbenhoft DP; Aiken GR; Orem WH; Hall BD Environ Sci Technol; 2009 Apr; 43(8):2726-32. PubMed ID: 19475941 [TBL] [Abstract][Full Text] [Related]
16. Effect of salinity on mercury methylating benthic microbes and their activities in Great Salt Lake, Utah. Boyd ES; Yu RQ; Barkay T; Hamilton TL; Baxter BK; Naftz DL; Marvin-DiPasquale M Sci Total Environ; 2017 Mar; 581-582():495-506. PubMed ID: 28057343 [TBL] [Abstract][Full Text] [Related]
17. Differentiated availability of geochemical mercury pools controls methylmercury levels in estuarine sediment and biota. Jonsson S; Skyllberg U; Nilsson MB; Lundberg E; Andersson A; Björn E Nat Commun; 2014 Aug; 5():4624. PubMed ID: 25140406 [TBL] [Abstract][Full Text] [Related]
19. Influence of sediment resuspension on the efficacy of geoengineering materials in the control of internal phosphorous loading from shallow eutrophic lakes. Yin H; Kong M; Han M; Fan C Environ Pollut; 2016 Dec; 219():568-579. PubMed ID: 27312332 [TBL] [Abstract][Full Text] [Related]
20. Manganese(iv) oxide amendments reduce methylmercury concentrations in sediment porewater. Vlassopoulos D; Kanematsu M; Henry EA; Goin J; Leven A; Glaser D; Brown SS; O'Day PA Environ Sci Process Impacts; 2018 Dec; 20(12):1746-1760. PubMed ID: 30393799 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]