BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 31706672)

  • 1. Spermidine improves antioxidant activity and energy metabolism in mung bean sprouts.
    Zhou T; Wang P; Gu Z; Ma M; Yang R
    Food Chem; 2020 Mar; 309():125759. PubMed ID: 31706672
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Polyamines regulating phytic acid degradation in mung bean sprouts.
    Zhou T; Wang P; Yang R; Gu Z
    J Sci Food Agric; 2018 Jul; 98(9):3299-3308. PubMed ID: 29239473
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Physiological and biochemical mechanisms of spermine-induced cadmium stress tolerance in mung bean (Vigna radiata L.) seedlings.
    Nahar K; Rahman M; Hasanuzzaman M; Alam MM; Rahman A; Suzuki T; Fujita M
    Environ Sci Pollut Res Int; 2016 Nov; 23(21):21206-21218. PubMed ID: 27491421
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exogenous brassinolide treatment regulates phenolic accumulation in mung bean sprouts through the modulation of sugar and energy metabolism.
    Wang H; Chen J; Guo R; Wang D; Wang T; Sun Y
    J Sci Food Agric; 2024 Feb; 104(3):1656-1667. PubMed ID: 37851693
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metabolomic analysis of energy regulated germination and sprouting of organic mung bean (Vigna radiata) using NMR spectroscopy.
    Chen L; Wu J; Li Z; Liu Q; Zhao X; Yang H
    Food Chem; 2019 Jul; 286():87-97. PubMed ID: 30827671
    [TBL] [Abstract][Full Text] [Related]  

  • 6. NO is involved in spermidine-induced drought tolerance in white clover via activation of antioxidant enzymes and genes.
    Peng D; Wang X; Li Z; Zhang Y; Peng Y; Li Y; He X; Zhang X; Ma X; Huang L; Yan Y
    Protoplasma; 2016 Sep; 253(5):1243-54. PubMed ID: 26338203
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Protective effect of spermidine on salt stress induced oxidative damage in two Kentucky bluegrass (Poa pratensis L.) cultivars.
    Puyang X; An M; Han L; Zhang X
    Ecotoxicol Environ Saf; 2015 Jul; 117():96-106. PubMed ID: 25841065
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of exogenous ATP on the postharvest properties and pectin degradation of mung bean sprouts (Vigna radiata).
    Chen L; Zhou Y; He Z; Liu Q; Lai S; Yang H
    Food Chem; 2018 Jun; 251():9-17. PubMed ID: 29426429
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sucrose treatment of mung bean seeds results in increased vitamin C, total phenolics, and antioxidant activity in mung bean sprouts.
    Wei Y; Wang X; Shao X; Xu F; Wang H
    Food Sci Nutr; 2019 Dec; 7(12):4037-4044. PubMed ID: 31890184
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of germination on phytochemical profiles and antioxidant activity of mung bean sprouts (Vigna radiata).
    Guo X; Li T; Tang K; Liu RH
    J Agric Food Chem; 2012 Nov; 60(44):11050-5. PubMed ID: 23088738
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of free amino acids, antioxidants, soluble phenolic acids, cytotoxicity and immunomodulation of fermented mung bean and soybean.
    Ali NM; Yeap SK; Yusof HM; Beh BK; Ho WY; Koh SP; Abdullah MP; Alitheen NB; Long K
    J Sci Food Agric; 2016 Mar; 96(5):1648-58. PubMed ID: 26009985
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Foliar spraying of exogenous uniconazole (S3307) at the flowering stage as an effective method to resist low-temperature stress on mung bean [Vigna radiata (L.) Wilczek].
    Xiang H; Wang S; Liang X; Wang X; Xie H; Wang D; Gai Z; Wang N; Xiang P; Han D; Shan D; Li Y; Li W
    Sci Rep; 2023 Dec; 13(1):22331. PubMed ID: 38102232
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Indole-3-butyric acid mediates antioxidative defense systems to promote adventitious rooting in mung bean seedlings under cadmium and drought stresses.
    Li SW; Zeng XY; Leng Y; Feng L; Kang XH
    Ecotoxicol Environ Saf; 2018 Oct; 161():332-341. PubMed ID: 29890434
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spermidine alleviates the growth of saline-stressed ginseng seedlings through antioxidative defense system.
    Parvin S; Lee OR; Sathiyaraj G; Khorolragchaa A; Kim YJ; Yang DC
    Gene; 2014 Mar; 537(1):70-8. PubMed ID: 24365592
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of acid pretreatment and the germination period on the composition and antioxidant activity of rice bean (Vigna umbellata).
    Sritongtae B; Sangsukiam T; Morgan MR; Duangmal K
    Food Chem; 2017 Jul; 227():280-288. PubMed ID: 28274433
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ca
    Zhou T; Wang P; Yang R; Wang X; Gu Z
    J Sci Food Agric; 2018 Mar; 98(5):1968-1976. PubMed ID: 28926677
    [TBL] [Abstract][Full Text] [Related]  

  • 17. iTRAQ analysis of low-phytate mung bean sprouts treated with sodium citrate, sodium acetate and sodium tartrate.
    Jin X; Yang R; Guo L; Wang X; Yan X; Gu Z
    Food Chem; 2017 Mar; 218():285-293. PubMed ID: 27719911
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Insights into spermine-induced combined high temperature and drought tolerance in mung bean: osmoregulation and roles of antioxidant and glyoxalase system.
    Nahar K; Hasanuzzaman M; Alam MM; Rahman A; Mahmud JA; Suzuki T; Fujita M
    Protoplasma; 2017 Jan; 254(1):445-460. PubMed ID: 27032937
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Effect of Light in Vitamin C Metabolism Regulation and Accumulation in Mung Bean (Vigna radiata) Germination.
    Lu Y; Guo X
    Plant Foods Hum Nutr; 2020 Mar; 75(1):24-29. PubMed ID: 31863295
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modulation of cadmium toxicity and enhancing cadmium-tolerance in wheat seedlings by exogenous application of polyamines.
    Rady MM; Hemida KA
    Ecotoxicol Environ Saf; 2015 Sep; 119():178-85. PubMed ID: 26004358
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.