These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 31706892)

  • 1. Thermodynamic analysis of direct interspecies electron transfer in syntrophic methanogenesis based on the optimized energy distribution.
    Liu Y; Gu M; Yin Q; Du J; Wu G
    Bioresour Technol; 2020 Feb; 297():122345. PubMed ID: 31706892
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhancing direct interspecies electron transfer in syntrophic-methanogenic associations with (semi)conductive iron oxides: Effects and mechanisms.
    Xu H; Chang J; Wang H; Liu Y; Zhang X; Liang P; Huang X
    Sci Total Environ; 2019 Dec; 695():133876. PubMed ID: 31756846
    [TBL] [Abstract][Full Text] [Related]  

  • 3. New insights into the mechanisms underlying biochar-assisted sustained high-efficient co-digestion: Reducing thermodynamic constraints and enhancing extracellular electron transfer flux.
    Li Q; Liu Y; Gao W; Wang G; Dzakpasu M; Li YY; Chen R
    Sci Total Environ; 2022 Mar; 811():151416. PubMed ID: 34748837
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cysteine-Accelerated Methanogenic Propionate Degradation in Paddy Soil Enrichment.
    Zhuang L; Ma J; Tang J; Tang Z; Zhou S
    Microb Ecol; 2017 May; 73(4):916-924. PubMed ID: 27815590
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Advances in direct interspecies electron transfer and conductive materials: Electron flux, organic degradation and microbial interaction.
    Yin Q; Wu G
    Biotechnol Adv; 2019 Dec; 37(8):107443. PubMed ID: 31476420
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Redox-based electron exchange capacity of biowaste-derived biochar accelerates syntrophic phenol oxidation for methanogenesis via direct interspecies electron transfer.
    Wang G; Gao X; Li Q; Zhao H; Liu Y; Wang XC; Chen R
    J Hazard Mater; 2020 May; 390():121726. PubMed ID: 31806442
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of an applied voltage on direct interspecies electron transfer via conductive materials for methane production.
    Lee JY; Park JH; Park HD
    Waste Manag; 2017 Oct; 68():165-172. PubMed ID: 28743578
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Syntrophic methane production from volatile fatty acids: Focus on interspecies electron transfer.
    Xu P; Liu H; Liu C; Zhu G
    Sci Total Environ; 2024 Oct; 946():174410. PubMed ID: 38960157
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neglected role of iron redox cycle in direct interspecies electron transfer in anaerobic methanogenesis: Inspired from biogeochemical processes.
    Xu H; Wang M; Hei S; Qi X; Zhang X; Liang P; Fu W; Pan B; Huang X
    Water Res; 2024 Sep; 262():122125. PubMed ID: 39053210
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kinetic and thermodynamic control of butyrate conversion in non-defined methanogenic communities.
    Junicke H; van Loosdrecht MC; Kleerebezem R
    Appl Microbiol Biotechnol; 2016 Jan; 100(2):915-25. PubMed ID: 26403924
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metatranscriptomic evidence for classical and RuBisCO-mediated CO
    Yang P; Tan GA; Aslam M; Kim J; Lee PH
    Sci Rep; 2019 Mar; 9(1):4116. PubMed ID: 30858464
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intermittent electrostimulation-modified direct interspecies electron transfer for enhanced methanogenesis in anaerobic digestion of sulfate-rich wastewater.
    Yuan Y; Liu H; Zhang L; Yin W; Li L; Chen T; Li Z; Wang A; Ding C
    Bioresour Technol; 2024 Aug; 406():130992. PubMed ID: 38885726
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Potentially direct interspecies electron transfer of methanogenesis for syntrophic metabolism under sulfate reducing conditions with stainless steel.
    Li Y; Zhang Y; Yang Y; Quan X; Zhao Z
    Bioresour Technol; 2017 Jun; 234():303-309. PubMed ID: 28340434
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Potential interactions between syntrophic bacteria and methanogens via type IV pili and quorum-sensing systems.
    Yin Q; Gu M; Hermanowicz SW; Hu H; Wu G
    Environ Int; 2020 May; 138():105650. PubMed ID: 32182450
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ethanol-mediated Anaerobic Digestion: Functional Bacteria and Metabolic Pathways.
    Zamel D; Pan X; Ye ZL
    Chemosphere; 2024 Oct; 367():143560. PubMed ID: 39426748
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Oxidation of glucose by syntrophic association between Geobacter and hydrogenotrophic methanogens in microbial fuel cell.
    Oyiwona GE; Ogbonna J; Anyanwu CU; Ishizaki S; Kimura ZI; Okabe S
    Biotechnol Lett; 2017 Feb; 39(2):253-259. PubMed ID: 27812825
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Advances towards understanding and engineering direct interspecies electron transfer in anaerobic digestion.
    Barua S; Dhar BR
    Bioresour Technol; 2017 Nov; 244(Pt 1):698-707. PubMed ID: 28818798
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of interspecies electron transfer stimulation in enhancing anaerobic digestion under ammonia stress: Mechanisms, advances, and perspectives.
    Xu J; Kumar Khanal S; Kang Y; Zhu J; Huang X; Zong Y; Pang W; Surendra KC; Xie L
    Bioresour Technol; 2022 Sep; 360():127558. PubMed ID: 35780934
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Research advances in direct interspecies electron transfer within microbes].
    Lan JY; Jiang HM; Li X
    Ying Yong Sheng Tai Xue Bao; 2021 Jan; 32(1):358-368. PubMed ID: 33477245
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recent advances in methanogenesis through direct interspecies electron transfer via conductive materials: A molecular microbiological perspective.
    Kang HJ; Lee SH; Lim TG; Park JH; Kim B; Buffière P; Park HD
    Bioresour Technol; 2021 Feb; 322():124587. PubMed ID: 33358582
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.