These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

473 related articles for article (PubMed ID: 31707076)

  • 1. Strategies for improving the electroactivity and specific metabolic functionality of microorganisms for various microbial electrochemical technologies.
    Chiranjeevi P; Patil SA
    Biotechnol Adv; 2020; 39():107468. PubMed ID: 31707076
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Engineering extracellular electron transfer pathways of electroactive microorganisms by synthetic biology for energy and chemicals production.
    Zhang J; Li F; Liu D; Liu Q; Song H
    Chem Soc Rev; 2024 Feb; 53(3):1375-1446. PubMed ID: 38117181
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Progress in enhancing electron transfer rate between exoelectrogenic microorganisms and electrode interface].
    Liu X; Zhang J; Zhang B; Yang C; Li F; Song H
    Sheng Wu Gong Cheng Xue Bao; 2021 Feb; 37(2):361-377. PubMed ID: 33645140
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microbial extracellular electron transfer and strategies for engineering electroactive microorganisms.
    Zhao J; Li F; Cao Y; Zhang X; Chen T; Song H; Wang Z
    Biotechnol Adv; 2021 Dec; 53():107682. PubMed ID: 33326817
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Weak electricigens: A new avenue for bioelectrochemical research.
    Doyle LE; Marsili E
    Bioresour Technol; 2018 Jun; 258():354-364. PubMed ID: 29519634
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Promoting efficiency of microbial extracellular electron transfer by synthetic biology].
    Li F; Song H
    Sheng Wu Gong Cheng Xue Bao; 2017 Mar; 33(3):516-534. PubMed ID: 28941349
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Advances in interfacial engineering for enhanced microbial extracellular electron transfer.
    Wang YX; Hou N; Liu XL; Mu Y
    Bioresour Technol; 2022 Feb; 345():126562. PubMed ID: 34910968
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functional group surface modifications for enhancing the formation and performance of exoelectrogenic biofilms on the anode of a bioelectrochemical system.
    Li C; Cheng S
    Crit Rev Biotechnol; 2019 Dec; 39(8):1015-1030. PubMed ID: 31496297
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrochemically active biofilms: facts and fiction. A review.
    Babauta J; Renslow R; Lewandowski Z; Beyenal H
    Biofouling; 2012; 28(8):789-812. PubMed ID: 22856464
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The diversity of techniques to study electrochemically active biofilms highlights the need for standardization.
    Harnisch F; Rabaey K
    ChemSusChem; 2012 Jun; 5(6):1027-38. PubMed ID: 22615099
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Extremophilic electroactive microorganisms: Promising biocatalysts for bioprocessing applications.
    Chaudhary S; Yadav S; Singh R; Sadhotra C; Patil SA
    Bioresour Technol; 2022 Mar; 347():126663. PubMed ID: 35017088
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electroactive microorganisms in bioelectrochemical systems.
    Logan BE; Rossi R; Ragab A; Saikaly PE
    Nat Rev Microbiol; 2019 May; 17(5):307-319. PubMed ID: 30846876
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of anode polarization on biofilm formation and electron transfer in Shewanella oneidensis/graphite felt microbial fuel cells.
    Pinto D; Coradin T; Laberty-Robert C
    Bioelectrochemistry; 2018 Apr; 120():1-9. PubMed ID: 29132011
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Purposely Designed Hierarchical Porous Electrodes for High Rate Microbial Electrosynthesis of Acetate from Carbon Dioxide.
    Flexer V; Jourdin L
    Acc Chem Res; 2020 Feb; 53(2):311-321. PubMed ID: 31990521
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microbial Interactions in Electroactive Biofilms for Environmental Engineering Applications: A Role for Nonexoelectrogens.
    Fessler M; Madsen JS; Zhang Y
    Environ Sci Technol; 2022 Nov; 56(22):15273-15279. PubMed ID: 36223388
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impact of Carbon Felt Electrode Pretreatment on Anodic Biofilm Composition in Microbial Electrolysis Cells.
    Spiess S; Kucera J; Seelajaroen H; Sasiain A; Thallner S; Kremser K; Novak D; Guebitz GM; Haberbauer M
    Biosensors (Basel); 2021 May; 11(6):. PubMed ID: 34073192
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microbial electrochemical technologies: Electronic circuitry and characterization tools.
    Sánchez C; Dessì P; Duffy M; Lens PNL
    Biosens Bioelectron; 2020 Feb; 150():111884. PubMed ID: 31780409
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of shear stress on electroactive biofilm characteristics and performance in microbial fuel cells.
    Godain A; Vogel TM; Fongarland P; Haddour N
    Biosens Bioelectron; 2024 Jan; 244():115806. PubMed ID: 37944355
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Advances in mechanisms and engineering of electroactive biofilms.
    You Z; Li J; Wang Y; Wu D; Li F; Song H
    Biotechnol Adv; 2023 Sep; 66():108170. PubMed ID: 37148984
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Overview of electroactive microorganisms and electron transfer mechanisms in microbial electrochemistry.
    Thapa BS; Kim T; Pandit S; Song YE; Afsharian YP; Rahimnejad M; Kim JR; Oh SE
    Bioresour Technol; 2022 Mar; 347():126579. PubMed ID: 34921921
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.