These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

473 related articles for article (PubMed ID: 31707076)

  • 21. Impact of electrode micro- and nano-scale topography on the formation and performance of microbial electrodes.
    Champigneux P; Delia ML; Bergel A
    Biosens Bioelectron; 2018 Oct; 118():231-246. PubMed ID: 30098490
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Microbial catalyzed electrochemical systems: a bio-factory with multi-facet applications.
    Venkata Mohan S; Velvizhi G; Vamshi Krishna K; Lenin Babu M
    Bioresour Technol; 2014 Aug; 165():355-64. PubMed ID: 24791713
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Let's chat: Communication between electroactive microorganisms.
    Paquete CM; Rosenbaum MA; Bañeras L; Rotaru AE; Puig S
    Bioresour Technol; 2022 Mar; 347():126705. PubMed ID: 35065228
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Does bioelectrochemical cell configuration and anode potential affect biofilm response?
    Kumar A; Katuri K; Lens P; Leech D
    Biochem Soc Trans; 2012 Dec; 40(6):1308-14. PubMed ID: 23176473
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Bidirectional extracellular electron transfers of electrode-biofilm: Mechanism and application.
    Jiang Y; Zeng RJ
    Bioresour Technol; 2019 Jan; 271():439-448. PubMed ID: 30292689
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Recent progress in the characterization and application of exo-electrogenic microorganisms.
    Jayathilake C; Piyumika G; Nazeer Z; Wijayawardene N; Rajakaruna S; Kumla J; Fernando E
    Antonie Van Leeuwenhoek; 2024 Jan; 117(1):10. PubMed ID: 38170279
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Scalability of microbial electrochemical technologies: Applications and challenges.
    Jadhav DA; Park SG; Pandit S; Yang E; Ali Abdelkareem M; Jang JK; Chae KJ
    Bioresour Technol; 2022 Feb; 345():126498. PubMed ID: 34890815
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Cultivating electroactive microbes-from field to bench.
    Yee MO; Deutzmann J; Spormann A; Rotaru AE
    Nanotechnology; 2020 Apr; 31(17):174003. PubMed ID: 31931483
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Critical transport rates that limit the performance of microbial electrochemistry technologies.
    Popat SC; Torres CI
    Bioresour Technol; 2016 Sep; 215():265-273. PubMed ID: 27211921
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Microbiome involved in microbial electrochemical systems (MESs): A review.
    Saratale RG; Saratale GD; Pugazhendhi A; Zhen G; Kumar G; Kadier A; Sivagurunathan P
    Chemosphere; 2017 Jun; 177():176-188. PubMed ID: 28288426
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Transforming exoelectrogens for biotechnology using synthetic biology.
    TerAvest MA; Ajo-Franklin CM
    Biotechnol Bioeng; 2016 Apr; 113(4):687-97. PubMed ID: 26284614
    [TBL] [Abstract][Full Text] [Related]  

  • 32. On-going applications of Shewanella species in microbial electrochemical system for bioenergy, bioremediation and biosensing.
    Zou L; Huang YH; Long ZE; Qiao Y
    World J Microbiol Biotechnol; 2018 Dec; 35(1):9. PubMed ID: 30569420
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Facet-engineered hematite boosts microbial electrogenesis by synergy of promoting electroactive biofilm formation and extracellular electron transfer.
    Wen L; Huang L; Wang Y; Yuan Y; Zhou L
    Sci Total Environ; 2022 May; 819():153154. PubMed ID: 35038509
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Protocol for bioelectrochemical enrichment, cultivation, and characterization of extreme electroactive microorganisms.
    Singh R; Chaudhary S; Yadav S; Patil SA
    STAR Protoc; 2022 Mar; 3(1):101114. PubMed ID: 35118426
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Biofilm Biology and Engineering of
    Hu Y; Wang Y; Han X; Shan Y; Li F; Shi L
    Front Bioeng Biotechnol; 2021; 9():786416. PubMed ID: 34926431
    [No Abstract]   [Full Text] [Related]  

  • 36. Study of the influence of nanoscale porosity on the microbial electroactivity between expanded graphite electrodes and Geobacter sulfurreducens biofilms.
    Ramírez-Moreno M; Berenguer R; Ortiz JM; Esteve-Núñez A
    Microb Biotechnol; 2024 Jan; 17(1):e14357. PubMed ID: 38151853
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Extracellular Polymeric Substances from Geobacter sulfurreducens Biofilms in Microbial Fuel Cells.
    Stöckl M; Teubner NC; Holtmann D; Mangold KM; Sand W
    ACS Appl Mater Interfaces; 2019 Mar; 11(9):8961-8968. PubMed ID: 30730701
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Electron Storage in Electroactive Biofilms.
    Ter Heijne A; Pereira MA; Pereira J; Sleutels T
    Trends Biotechnol; 2021 Jan; 39(1):34-42. PubMed ID: 32646618
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Electroactivity of the Gram-positive bacterium Paenibacillus dendritiformis MA-72.
    Hubenova Y; Hubenova E; Mitov M
    Bioelectrochemistry; 2020 Dec; 136():107632. PubMed ID: 32795939
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Three-Dimensional Electrodes for High-Performance Bioelectrochemical Systems.
    Yu YY; Zhai DD; Si RW; Sun JZ; Liu X; Yong YC
    Int J Mol Sci; 2017 Jan; 18(1):. PubMed ID: 28054970
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 24.