These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 31707278)

  • 1. A journey in the complex interactions between electrochemistry and bacteriology: From electroactivity to electromodulation of bacterial biofilms.
    Czerwińska-Główka D; Krukiewicz K
    Bioelectrochemistry; 2020 Feb; 131():107401. PubMed ID: 31707278
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Strategies for improving the electroactivity and specific metabolic functionality of microorganisms for various microbial electrochemical technologies.
    Chiranjeevi P; Patil SA
    Biotechnol Adv; 2020; 39():107468. PubMed ID: 31707076
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impact of electrode micro- and nano-scale topography on the formation and performance of microbial electrodes.
    Champigneux P; Delia ML; Bergel A
    Biosens Bioelectron; 2018 Oct; 118():231-246. PubMed ID: 30098490
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of anode polarization on biofilm formation and electron transfer in Shewanella oneidensis/graphite felt microbial fuel cells.
    Pinto D; Coradin T; Laberty-Robert C
    Bioelectrochemistry; 2018 Apr; 120():1-9. PubMed ID: 29132011
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrical spiking in bacterial biofilms.
    Masi E; Ciszak M; Santopolo L; Frascella A; Giovannetti L; Marchi E; Viti C; Mancuso S
    J R Soc Interface; 2015 Jan; 12(102):20141036. PubMed ID: 25392401
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Application of electro-active biofilms.
    Erable B; Duţeanu NM; Ghangrekar MM; Dumas C; Scott K
    Biofouling; 2010 Jan; 26(1):57-71. PubMed ID: 20390557
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrochemical characterization of anodic biofilms enriched with glucose and acetate in single-chamber microbial fuel cells.
    Yuan Y; Zhou S; Xu N; Zhuang L
    Colloids Surf B Biointerfaces; 2011 Feb; 82(2):641-6. PubMed ID: 21050727
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The diversity of techniques to study electrochemically active biofilms highlights the need for standardization.
    Harnisch F; Rabaey K
    ChemSusChem; 2012 Jun; 5(6):1027-38. PubMed ID: 22615099
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization and performance of anodic mixed culture biofilms in submersed microbial fuel cells.
    Saba B; Christy AD; Yu Z; Co AC; Islam R; Tuovinen OH
    Bioelectrochemistry; 2017 Feb; 113():79-84. PubMed ID: 27816024
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrochemical and microbial monitoring of multi-generational electroactive biofilms formed from mangrove sediment.
    Rivalland C; Madhkour S; Salvin P; Robert F
    Bioelectrochemistry; 2015 Dec; 106(Pt A):125-32. PubMed ID: 26055041
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Eradication of Pseudomonas aeruginosa cells by cathodic electrochemical currents delivered with graphite electrodes.
    Niepa THR; Wang H; Gilbert JL; Ren D
    Acta Biomater; 2017 Mar; 50():344-352. PubMed ID: 28049020
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interpretation of the electrochemical response of a multi-population biofilm in a microfluidic microbial fuel cell using a comprehensive model.
    Mardanpour MM; Saadatmand M; Yaghmaei S
    Bioelectrochemistry; 2019 Aug; 128():39-48. PubMed ID: 30917333
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A new approach for in situ cyclic voltammetry of a microbial fuel cell biofilm without using a potentiostat.
    Cheng KY; Cord-Ruwisch R; Ho G
    Bioelectrochemistry; 2009 Feb; 74(2):227-31. PubMed ID: 19019740
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Weak electricigens: A new avenue for bioelectrochemical research.
    Doyle LE; Marsili E
    Bioresour Technol; 2018 Jun; 258():354-364. PubMed ID: 29519634
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of alternating electrical current on denitrifying bacteria in a microbial electrochemical system: biofilm viability and ATP assessment.
    Dehghani S; Rezaee A; Hosseinkhani S
    Environ Sci Pollut Res Int; 2018 Nov; 25(33):33591-33598. PubMed ID: 30269283
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Investigating electrochemical removal of bacterial biofilms from stainless steel substrates.
    Dargahi M; Hosseinidoust Z; Tufenkji N; Omanovic S
    Colloids Surf B Biointerfaces; 2014 May; 117():152-7. PubMed ID: 24681392
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A basic tutorial on cyclic voltammetry for the investigation of electroactive microbial biofilms.
    Harnisch F; Freguia S
    Chem Asian J; 2012 Mar; 7(3):466-75. PubMed ID: 22279004
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrocatalytic activity of anodic biofilm responses to pH changes in microbial fuel cells.
    Yuan Y; Zhao B; Zhou S; Zhong S; Zhuang L
    Bioresour Technol; 2011 Jul; 102(13):6887-91. PubMed ID: 21530241
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Community structure dynamics during startup in microbial fuel cells - The effect of phosphate concentrations.
    Yanuka-Golub K; Reshef L; Rishpon J; Gophna U
    Bioresour Technol; 2016 Jul; 212():151-159. PubMed ID: 27092994
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrochemical checking of aerobic isolates from electrochemically active biofilms formed in compost.
    Parot S; Nercessian O; Delia ML; Achouak W; Bergel A
    J Appl Microbiol; 2009 Apr; 106(4):1350-9. PubMed ID: 19228259
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.