These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2433 related articles for article (PubMed ID: 31707624)
21. Understanding connections and roles of gut microbiome in cardiovascular diseases. Rajendiran E; Ramadass B; Ramprasath V Can J Microbiol; 2021 Feb; 67(2):101-111. PubMed ID: 33079568 [TBL] [Abstract][Full Text] [Related]
22. Trimethylamine N-Oxide Aggravates Liver Steatosis through Modulation of Bile Acid Metabolism and Inhibition of Farnesoid X Receptor Signaling in Nonalcoholic Fatty Liver Disease. Tan X; Liu Y; Long J; Chen S; Liao G; Wu S; Li C; Wang L; Ling W; Zhu H Mol Nutr Food Res; 2019 Sep; 63(17):e1900257. PubMed ID: 31095863 [TBL] [Abstract][Full Text] [Related]
23. Gut Immunity and Microbiota Dysbiosis Are Associated with Altered Bile Acid Metabolism in LPS-Challenged Piglets. Xiao X; Cheng Y; Fu J; Lu Z; Wang F; Jin M; Zong X; Wang Y Oxid Med Cell Longev; 2021; 2021():6634821. PubMed ID: 33833852 [TBL] [Abstract][Full Text] [Related]
24. Gut microbiota and host metabolism in liver cirrhosis. Usami M; Miyoshi M; Yamashita H World J Gastroenterol; 2015 Nov; 21(41):11597-608. PubMed ID: 26556989 [TBL] [Abstract][Full Text] [Related]
25. Gut Microbiota in Hypertension and Atherosclerosis: A Review. Verhaar BJH; Prodan A; Nieuwdorp M; Muller M Nutrients; 2020 Sep; 12(10):. PubMed ID: 33003455 [TBL] [Abstract][Full Text] [Related]
26. Importance of gut microbiota metabolites in the development of cardiovascular diseases (CVD). Hemmati M; Kashanipoor S; Mazaheri P; Alibabaei F; Babaeizad A; Asli S; Mohammadi S; Gorgin AH; Ghods K; Yousefi B; Eslami M Life Sci; 2023 Sep; 329():121947. PubMed ID: 37463653 [TBL] [Abstract][Full Text] [Related]
27. Cranberries attenuate animal-based diet-induced changes in microbiota composition and functionality: a randomized crossover controlled feeding trial. Rodríguez-Morató J; Matthan NR; Liu J; de la Torre R; Chen CO J Nutr Biochem; 2018 Dec; 62():76-86. PubMed ID: 30269035 [TBL] [Abstract][Full Text] [Related]
28. Trimethylamine-N-oxide: a link between the gut microbiome, bile acid metabolism, and atherosclerosis. Wilson A; McLean C; Kim RB Curr Opin Lipidol; 2016 Apr; 27(2):148-54. PubMed ID: 26959704 [TBL] [Abstract][Full Text] [Related]
29. Effects of flaxseed powder in improving non-alcoholic fatty liver by regulating gut microbiota-bile acids metabolic pathway through FXR/TGR5 mediating. Yang C; Yang L; Yang Y; Wan M; Xu D; Pan D; Sun G Biomed Pharmacother; 2023 Jul; 163():114864. PubMed ID: 37167728 [TBL] [Abstract][Full Text] [Related]
30. Gut Microbiota-Dependent Trimethylamine N-Oxide Associates With Inflammation in Common Variable Immunodeficiency. Macpherson ME; Hov JR; Ueland T; Dahl TB; Kummen M; Otterdal K; Holm K; Berge RK; Mollnes TE; Trøseid M; Halvorsen B; Aukrust P; Fevang B; Jørgensen SF Front Immunol; 2020; 11():574500. PubMed ID: 33042155 [TBL] [Abstract][Full Text] [Related]
31. Gut microbiota is a potential goalkeeper of dyslipidemia. Lei L; Zhao N; Zhang L; Chen J; Liu X; Piao S Front Endocrinol (Lausanne); 2022; 13():950826. PubMed ID: 36176475 [TBL] [Abstract][Full Text] [Related]
32. Metabolic retroconversion of trimethylamine N-oxide and the gut microbiota. Hoyles L; Jiménez-Pranteda ML; Chilloux J; Brial F; Myridakis A; Aranias T; Magnan C; Gibson GR; Sanderson JD; Nicholson JK; Gauguier D; McCartney AL; Dumas ME Microbiome; 2018 Apr; 6(1):73. PubMed ID: 29678198 [TBL] [Abstract][Full Text] [Related]
33. Protective properties of milk sphingomyelin against dysfunctional lipid metabolism, gut dysbiosis, and inflammation. Norris GH; Milard M; Michalski MC; Blesso CN J Nutr Biochem; 2019 Nov; 73():108224. PubMed ID: 31654895 [TBL] [Abstract][Full Text] [Related]
34. Interplay between diet, the gut microbiome, and atherosclerosis: Role of dysbiosis and microbial metabolites on inflammation and disordered lipid metabolism. Anto L; Blesso CN J Nutr Biochem; 2022 Jul; 105():108991. PubMed ID: 35331903 [TBL] [Abstract][Full Text] [Related]
35. Contribution of the gut microbiota to the regulation of host metabolism and energy balance: a focus on the gut-liver axis. Delzenne NM; Knudsen C; Beaumont M; Rodriguez J; Neyrinck AM; Bindels LB Proc Nutr Soc; 2019 Aug; 78(3):319-328. PubMed ID: 30628563 [TBL] [Abstract][Full Text] [Related]
36. Interactions between gut bacteria and bile in health and disease. Long SL; Gahan CGM; Joyce SA Mol Aspects Med; 2017 Aug; 56():54-65. PubMed ID: 28602676 [TBL] [Abstract][Full Text] [Related]
37. Beneficial effects of exercise on gut microbiota functionality and barrier integrity, and gut-liver crosstalk in an Carbajo-Pescador S; Porras D; García-Mediavilla MV; Martínez-Flórez S; Juarez-Fernández M; Cuevas MJ; Mauriz JL; González-Gallego J; Nistal E; Sánchez-Campos S Dis Model Mech; 2019 Apr; 12(5):. PubMed ID: 30971408 [TBL] [Abstract][Full Text] [Related]
38. Melatonin relieves hepatic lipid dysmetabolism caused by aging via modifying the secondary bile acid pattern of gut microbes. Wei D; Li Y; Che M; Li C; Wu Q; Sun C Cell Mol Life Sci; 2022 Sep; 79(10):527. PubMed ID: 36151409 [TBL] [Abstract][Full Text] [Related]
39. The Role of the Gut Microbiota in Bile Acid Metabolism. Ramírez-Pérez O; Cruz-Ramón V; Chinchilla-López P; Méndez-Sánchez N Ann Hepatol; 2017 Nov; 16(Suppl. 1: s3-105.):s15-s20. PubMed ID: 29080339 [TBL] [Abstract][Full Text] [Related]
40. You Are What You Eat-The Relationship between Diet, Microbiota, and Metabolic Disorders-A Review. Moszak M; Szulińska M; Bogdański P Nutrients; 2020 Apr; 12(4):. PubMed ID: 32326604 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]