These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

264 related articles for article (PubMed ID: 31708215)

  • 21. Rapid on-site identification of pesticide residues in tea by one-dimensional convolutional neural network coupled with surface-enhanced Raman scattering.
    Zhu J; Sharma AS; Xu J; Xu Y; Jiao T; Ouyang Q; Li H; Chen Q
    Spectrochim Acta A Mol Biomol Spectrosc; 2021 Feb; 246():118994. PubMed ID: 33038862
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Prediction of retention in hydrophilic interaction liquid chromatography using solute molecular descriptors based on chemical structures.
    Taraji M; Haddad PR; Amos RI; Talebi M; Szucs R; Dolan JW; Pohl CA
    J Chromatogr A; 2017 Feb; 1486():59-67. PubMed ID: 28049585
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Towards a chromatographic similarity index to establish localised quantitative structure-retention relationships for retention prediction. II Use of Tanimoto similarity index in ion chromatography.
    Park SH; Talebi M; Amos RIJ; Tyteca E; Haddad PR; Szucs R; Pohl CA; Dolan JW
    J Chromatogr A; 2017 Nov; 1523():173-182. PubMed ID: 28291517
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Predicting drug-target interaction network using deep learning model.
    You J; McLeod RD; Hu P
    Comput Biol Chem; 2019 Jun; 80():90-101. PubMed ID: 30939415
    [TBL] [Abstract][Full Text] [Related]  

  • 25. NIR spectroscopy-CNN-enabled chemometrics for multianalyte monitoring in microbial fermentation.
    Banerjee S; Mandal S; Jesubalan NG; Jain R; Rathore AS
    Biotechnol Bioeng; 2024 Jun; 121(6):1803-1819. PubMed ID: 38390805
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Correlation of rocket propulsion fuel properties with chemical composition using comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometry followed by partial least squares regression analysis.
    Kehimkar B; Hoggard JC; Marney LC; Billingsley MC; Fraga CG; Bruno TJ; Synovec RE
    J Chromatogr A; 2014 Jan; 1327():132-40. PubMed ID: 24411093
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Understanding the learning mechanism of convolutional neural networks in spectral analysis.
    Zhang X; Xu J; Yang J; Chen L; Zhou H; Liu X; Li H; Lin T; Ying Y
    Anal Chim Acta; 2020 Jul; 1119():41-51. PubMed ID: 32439053
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Enhancing partial least squares modeling of comprehensive two-dimensional gas chromatography time-of-flight mass spectrometry data by tile-based variance ranking.
    Cain CN; Ochoa GS; Synovec RE
    J Chromatogr A; 2023 Apr; 1694():463920. PubMed ID: 36933463
    [TBL] [Abstract][Full Text] [Related]  

  • 29. An automated ranking platform for machine learning regression models for meat spoilage prediction using multi-spectral imaging and metabolic profiling.
    Estelles-Lopez L; Ropodi A; Pavlidis D; Fotopoulou J; Gkousari C; Peyrodie A; Panagou E; Nychas GJ; Mohareb F
    Food Res Int; 2017 Sep; 99(Pt 1):206-215. PubMed ID: 28784477
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Quantitative structure retention relationship (QSRR) modelling for Analytes' retention prediction in LC-HRMS by applying different Machine Learning algorithms and evaluating their performance.
    Liapikos T; Zisi C; Kodra D; Kademoglou K; Diamantidou D; Begou O; Pappa-Louisi A; Theodoridis G
    J Chromatogr B Analyt Technol Biomed Life Sci; 2022 Feb; 1191():123132. PubMed ID: 35093854
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Assessment of Automated Identification of Phases in Videos of Cataract Surgery Using Machine Learning and Deep Learning Techniques.
    Yu F; Silva Croso G; Kim TS; Song Z; Parker F; Hager GD; Reiter A; Vedula SS; Ali H; Sikder S
    JAMA Netw Open; 2019 Apr; 2(4):e191860. PubMed ID: 30951163
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Comparison of multiple linear regression, partial least squares and artificial neural networks for prediction of gas chromatographic relative retention times of trimethylsilylated anabolic androgenic steroids.
    Fragkaki AG; Farmaki E; Thomaidis N; Tsantili-Kakoulidou A; Angelis YS; Koupparis M; Georgakopoulos C
    J Chromatogr A; 2012 Sep; 1256():232-9. PubMed ID: 22901297
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Computer-assisted structure identification (CASI)--an automated platform for high-throughput identification of small molecules by two-dimensional gas chromatography coupled to mass spectrometry.
    Knorr A; Monge A; Stueber M; Stratmann A; Arndt D; Martin E; Pospisil P
    Anal Chem; 2013 Dec; 85(23):11216-24. PubMed ID: 24160557
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Deep Neural Network Pretrained by Weighted Autoencoders and Transfer Learning for Retention Time Prediction of Small Molecules.
    Ju R; Liu X; Zheng F; Lu X; Xu G; Lin X
    Anal Chem; 2021 Nov; 93(47):15651-15658. PubMed ID: 34780148
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Transferability of artificial neural networks for clinical document classification across hospitals: A case study on abnormality detection from radiology reports.
    Hassanzadeh H; Nguyen A; Karimi S; Chu K
    J Biomed Inform; 2018 Sep; 85():68-79. PubMed ID: 30026067
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A CAD system for pulmonary nodule prediction based on deep three-dimensional convolutional neural networks and ensemble learning.
    Huang W; Xue Y; Wu Y
    PLoS One; 2019; 14(7):e0219369. PubMed ID: 31299053
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Deep Learning Based Prediction of Gas Chromatographic Retention Indices for a Wide Variety of Polar and Mid-Polar Liquid Stationary Phases.
    Matyushin DD; Sholokhova AY; Buryak AK
    Int J Mol Sci; 2021 Aug; 22(17):. PubMed ID: 34502099
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Retention-time prediction in comprehensive two-dimensional gas chromatography to aid identification of unknown contaminants.
    Veenaas C; Linusson A; Haglund P
    Anal Bioanal Chem; 2018 Dec; 410(30):7931-7941. PubMed ID: 30361914
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Untargeted Serum Metabolic Profiling by Comprehensive Two-Dimensional Gas Chromatography-High-Resolution Time-of-Flight Mass Spectrometry.
    Di Giovanni N; Meuwis MA; Louis E; Focant JF
    J Proteome Res; 2020 Mar; 19(3):1013-1028. PubMed ID: 31774291
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Analysis of human plasma lipids by using comprehensive two-dimensional gas chromatography with dual detection and with the support of high-resolution time-of-flight mass spectrometry for structural elucidation.
    Salivo S; Beccaria M; Sullini G; Tranchida PQ; Dugo P; Mondello L
    J Sep Sci; 2015 Jan; 38(2):267-75. PubMed ID: 25388539
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.