These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

259 related articles for article (PubMed ID: 31708477)

  • 1. Wnt Inhibition Facilitates RNA-Mediated Reprogramming of Human Somatic Cells to Naive Pluripotency.
    Bredenkamp N; Yang J; Clarke J; Stirparo GG; von Meyenn F; Dietmann S; Baker D; Drummond R; Ren Y; Li D; Wu C; Rostovskaya M; Eminli-Meissner S; Smith A; Guo G
    Stem Cell Reports; 2019 Dec; 13(6):1083-1098. PubMed ID: 31708477
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stem Cell Surface Marker Expression Defines Late Stages of Reprogramming to Pluripotency in Human Fibroblasts.
    Pomeroy JE; Hough SR; Davidson KC; Quaas AM; Rees JA; Pera MF
    Stem Cells Transl Med; 2016 Jul; 5(7):870-82. PubMed ID: 27160704
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tankyrase inhibition promotes a stable human naïve pluripotent state with improved functionality.
    Zimmerlin L; Park TS; Huo JS; Verma K; Pather SR; Talbot CC; Agarwal J; Steppan D; Zhang YW; Considine M; Guo H; Zhong X; Gutierrez C; Cope L; Canto-Soler MV; Friedman AD; Baylin SB; Zambidis ET
    Development; 2016 Dec; 143(23):4368-4380. PubMed ID: 27660325
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Signalling Through Retinoic Acid Receptors is Required for Reprogramming of Both Mouse Embryonic Fibroblast Cells and Epiblast Stem Cells to Induced Pluripotent Stem Cells.
    Yang J; Wang W; Ooi J; Campos LS; Lu L; Liu P
    Stem Cells; 2015 May; 33(5):1390-404. PubMed ID: 25546009
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Cell-Surface Marker Sushi Containing Domain 2 Facilitates Establishment of Human Naive Pluripotent Stem Cells.
    Bredenkamp N; Stirparo GG; Nichols J; Smith A; Guo G
    Stem Cell Reports; 2019 Jun; 12(6):1212-1222. PubMed ID: 31031191
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Derivation of novel human ground state naive pluripotent stem cells.
    Gafni O; Weinberger L; Mansour AA; Manor YS; Chomsky E; Ben-Yosef D; Kalma Y; Viukov S; Maza I; Zviran A; Rais Y; Shipony Z; Mukamel Z; Krupalnik V; Zerbib M; Geula S; Caspi I; Schneir D; Shwartz T; Gilad S; Amann-Zalcenstein D; Benjamin S; Amit I; Tanay A; Massarwa R; Novershtern N; Hanna JH
    Nature; 2013 Dec; 504(7479):282-6. PubMed ID: 24172903
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comprehensive characterization of distinct states of human naive pluripotency generated by reprogramming.
    Liu X; Nefzger CM; Rossello FJ; Chen J; Knaupp AS; Firas J; Ford E; Pflueger J; Paynter JM; Chy HS; O'Brien CM; Huang C; Mishra K; Hodgson-Garms M; Jansz N; Williams SM; Blewitt ME; Nilsson SK; Schittenhelm RB; Laslett AL; Lister R; Polo JM
    Nat Methods; 2017 Nov; 14(11):1055-1062. PubMed ID: 28945704
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Parallel derivation of isogenic human primed and naive induced pluripotent stem cells.
    Kilens S; Meistermann D; Moreno D; Chariau C; Gaignerie A; Reignier A; Lelièvre Y; Casanova M; Vallot C; Nedellec S; Flippe L; Firmin J; Song J; Charpentier E; Lammers J; Donnart A; Marec N; Deb W; Bihouée A; Le Caignec C; Pecqueur C; Redon R; Barrière P; Bourdon J; Pasque V; Soumillon M; Mikkelsen TS; Rougeulle C; Fréour T; David L;
    Nat Commun; 2018 Jan; 9(1):360. PubMed ID: 29367672
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Robust Differentiation of mRNA-Reprogrammed Human Induced Pluripotent Stem Cells Toward a Retinal Lineage.
    Sridhar A; Ohlemacher SK; Langer KB; Meyer JS
    Stem Cells Transl Med; 2016 Apr; 5(4):417-26. PubMed ID: 26933039
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reprogramming roadmap reveals route to human induced trophoblast stem cells.
    Liu X; Ouyang JF; Rossello FJ; Tan JP; Davidson KC; Valdes DS; Schröder J; Sun YBY; Chen J; Knaupp AS; Sun G; Chy HS; Huang Z; Pflueger J; Firas J; Tano V; Buckberry S; Paynter JM; Larcombe MR; Poppe D; Choo XY; O'Brien CM; Pastor WA; Chen D; Leichter AL; Naeem H; Tripathi P; Das PP; Grubman A; Powell DR; Laslett AL; David L; Nilsson SK; Clark AT; Lister R; Nefzger CM; Martelotto LG; Rackham OJL; Polo JM
    Nature; 2020 Oct; 586(7827):101-107. PubMed ID: 32939092
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthetic mRNA Reprogramming of Human Fibroblast Cells.
    Liu J; Verma PJ
    Methods Mol Biol; 2015; 1330():17-28. PubMed ID: 26621585
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Combined RNA-seq and RAT-seq mapping of long noncoding RNAs in pluripotent reprogramming.
    Du Z; Jia L; Wang Y; Wang C; Wen X; Chen J; Zhu Y; Yu D; Zhou L; Chen N; Zhang S; Celik I; Ay F; Gao S; Zhang S; Li W; Hoffman AR; Cui J; Hu JF
    Sci Data; 2018 Nov; 5():180255. PubMed ID: 30457566
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transcriptomic profiling of porcine pluripotency identifies species-specific reprogramming requirements for culturing iPSCs.
    Habekost M; Jørgensen AL; Qvist P; Denham M
    Stem Cell Res; 2019 Dec; 41():101645. PubMed ID: 31759291
    [TBL] [Abstract][Full Text] [Related]  

  • 14. DPPA5 Supports Pluripotency and Reprogramming by Regulating NANOG Turnover.
    Qian X; Kim JK; Tong W; Villa-Diaz LG; Krebsbach PH
    Stem Cells; 2016 Mar; 34(3):588-600. PubMed ID: 26661329
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Capacitation of Human Naïve Pluripotent Stem Cells.
    Rostovskaya M
    Methods Mol Biol; 2022; 2416():117-131. PubMed ID: 34870834
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Laminin111-based defined culture promoting self-renewing human pluripotent stem cells with properties of the early post-implantation epiblast.
    Gropp M; Waldhorn I; Gil Y; Steiner D; Turetsky TT; Smith Y; Sabag O; Falick-Michaeli T; Even Ram S; Reubinoff BE
    Stem Cell Reports; 2022 Dec; 17(12):2643-2660. PubMed ID: 36368331
    [TBL] [Abstract][Full Text] [Related]  

  • 17. TGFβ signalling is required to maintain pluripotency of human naïve pluripotent stem cells.
    Osnato A; Brown S; Krueger C; Andrews S; Collier AJ; Nakanoh S; Quiroga Londoño M; Wesley BT; Muraro D; Brumm AS; Niakan KK; Vallier L; Ortmann D; Rugg-Gunn PJ
    Elife; 2021 Aug; 10():. PubMed ID: 34463252
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Accessing naïve human pluripotency.
    De Los Angeles A; Loh YH; Tesar PJ; Daley GQ
    Curr Opin Genet Dev; 2012 Jun; 22(3):272-82. PubMed ID: 22463982
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Agarose microgel culture delineates lumenogenesis in naive and primed human pluripotent stem cells.
    Schindler M; Siriwardena D; Kohler TN; Ellermann AL; Slatery E; Munger C; Hollfelder F; Boroviak TE
    Stem Cell Reports; 2021 May; 16(5):1347-1362. PubMed ID: 33979603
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lineage-Specific Differentiation Is Influenced by State of Human Pluripotency.
    Lee JH; Laronde S; Collins TJ; Shapovalova Z; Tanasijevic B; McNicol JD; Fiebig-Comyn A; Benoit YD; Lee JB; Mitchell RR; Bhatia M
    Cell Rep; 2017 Apr; 19(1):20-35. PubMed ID: 28380358
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.